(来源:
www.cell.com)
其他“无所不在的智能”案例,还包括一种外观像药丸,其实是以异质整合技术制作的小型光学元件;卢超群表示,当病患吞下这种药丸,它就会扮演在人体内收集资料以及提供情报的微型电脑。生活智能是另一个智能技术能发挥的领域,他指出,AI也可以与食材融合,用来监测它们的“健康情况”。
此外还有“微生物群”(Microbiome),也就是所有生活在人体的微生物;卢超群再次为吹嘘自己儿子的研究抱歉,表示现在锁定人体微生物群的疗法正在迅速发展。卢冠达在一本题为《打造人类健康应用之微生物群》(Engineering the Microbiome for Human Health Applications)的共同著作书籍中就提到,微生物群疗法可能构建出“临床相关的生物感测器,实现能在人体中作用的强韧、有效之合成基因电路。”
虽然生物科学领域听起来很有趣,我们还是得打断卢超群,问他:那么半导体产业在这类“普适智能”(pervasive intelligence)世界中的研发专案,能提供那些实质性的优势?
卢超群的回答是:“我们在运算领域学到的知识、专长与理论至关重要,而且可以转移到其他领域;他反问:“矽芯片技术教了我们什么?”他说,是教了我们如何把东西做得更小,而且以更快的速度计算资料。
芯片产业微缩制成的奥妙,现在可以用以打造人工智能、物联网以及生物应用的纳米级模组;卢超群看好产业界能够生产应用导向的HI纳米系统:“我们能借由最佳化物理学、材料、元件、电路/芯片、软体与系统来实现这个目标。”
异质整合蓝图即将揭晓
HIR委员会准备在今年7月的SEMICON West发表现有工作成果,委员会旗下的22个技术工作小组正各自为HIR技术文件撰写一个章节,以进行同侪审查、编辑与定稿,然后在会议上发表。HIR委员会共同主席Bill Bottoms表示,该技术文件将会在7月发表,并在SEMICON West之后不久上网。
拥有22个章节的HIR技术文件,将涵盖HI的市场应用、HI元件、设计(包括共同设计与模拟软体、工具与实作等),以及像是材料与诸如与SiP、3D+2.5D与WLP (扇入与扇出)等技术的互连、整合程序等交叉议题。
Bottoms指出,散热管理与安全性是两个后来补充的议题,HIR委员会的成员认为它们很重要,而且相关发现能让所有技术工作小组获益。他指出,散热管理小组是由来自Google的代表所领导;而他也再次强调HIR获得产业界领导厂商的大力支持:“很多Intel、Google与IBM的资深人士都是活跃成员。”
除了HIR,产业界还有两个组织在推动后ITRS技术蓝图,包括IEEE标准协会(Standards Association)支持、与重启运算计划(Rebooting Computing Initiative)相关的IRDS (International Technology Roadmap for Devices and Systems);还有ITRW (International Technology Roadmap for Wide Band-Gap Semiconductors),是IEEE电力电子学会(Power Electronics Society)所赞助。
并没有哪一个组织说自己比人家厉害,而且Bottoms强调:“这些蓝图从三个各自技术领域的有利位置看未来,他们能以各自协调的复杂性彼此互补,替电子产业的未来提供多维观点。”