通信人家园

标题: 5G NB-IoT增添了什么新内容?  [查看完整版帖子] [打印本页]

时间:  2021-6-29 10:35
作者: adamth     标题: 5G NB-IoT增添了什么新内容?

3GPP的新规范里对此有描述吗?
时间:  2021-6-29 11:13
作者: 没事来看看

还没有最终敲定吧,NB进入M-IOT方案主要是中国在推动。
时间:  2021-11-12 14:19
作者: mine670

之前整理过一版R15的演进,
R15对于NB-IoT:
主要集中在降低UE功耗和增强Rel-13/14 NB物联网空中接口和协议层的部分;其他新功能包括支持small cell、NB IoT独立操作模式扩展和TDD。
1.1、空闲模式唤醒信号(FDD)
当UE位于DRX或eDRX状态时,它必须进行定期检查是否有寻呼消息。在大多数情况下,没有消息到达UE,UE消耗的功率本可以节省。此功能允许eNB向UE发送“唤醒信号”(WUS),以指示UE必须监视NPDCCH进行寻呼,否则允许UE跳过寻呼过程。这使得UE可在更长的时间内关闭部分硬件,并节省对NPDCCH和NPDSCH进行寻呼解码的功耗。根据网络要求UE在接收WUS后“唤醒”的时间长短,UE可以仅保持打开专用于WUS检测的接收器,从而允许UE的大部分传统硬件保持在非常低的功率状态。
1.2、调度请求(FDD)
在Rel-13/14nb-IoT中,调度请求(SR)仅作为一个更高层的处理过程,它触发一个随机访问过程,请求足够的UL资源来发送缓冲区状态报告(BSR)。Rel-15增加了新的、更节省资源和能源的方法,可以通过eNB配置来实现这一目标。
对于连接态UE,eNB能够通过RRC配置用于UE发送BSR的周期性NPUSCH资源,因此当挂起的业务到达UE的缓冲器时通知eNB。资源通过NPDCCH上的动态信令被激活和取消激活(“释放”)。
连接态UE能够在物理层向eNB发送请求,以被授予NPUSCH资源来发送BSR。这可以通过使用预先配置的NPRACH传输的专用信号来完成,或者通过将请求“稍待确认”到来自UE的HARQ ACK或NACK传输上(如果可用),通过将覆盖码应用到ACK或NACK符号来完成。
1.3、Early data transmission(FDD)
空闲模式UE能够在随机存取过程的Msg3中传送数据,其承载在328到1000比特之间。在eNB成功接收之后,随机访问过程终止并且UE不转换到连接模式。如果其挂起数据小于eNB配置的最大允许大小,则UE通过使用预先配置的NPRACH资源集来请求EDT的授权以用于其前导码传输。eNB可以允许UE发送小于最大允许大小的数据量,以减少发送填充位所花费的功率。
1.4、快速释放RRC连接(FDD和TDD)
在接收到RRCConnectionRelease消息之后,NB IoT UE必须等待,等待时间为最大10秒,以防较低层没有指示接收的成功确认。该特性允许,在UE未被轮询的情况下,UE可以考虑在UE发送HARQ ACK后立即成功地确认RRCConnectionRelease消息的接收。这个特性是从Rel-14规范中引入的。
1.5、小区重选的放松监测(FDD和TDD)
此特性允许在NB IoT UE静止和/或网络拓扑不变并且UE电池寿命可相应延长的情况下避免大部分RRM监视。网络使用“NRSRP delta”阈值配置UE,当RSRP中其当前小区的变化小于阈值时,UE不需要监视相邻小区24小时。这个特性是从Rel-14规范中引入的。
1.6、RLC UM(FDD和TDD)
Rel-15增加了对RLC未确认模式(UM)的支持,以补充Rel-13中引入的已确认模式(AM)和透明模式(TM)。这减少了对物联网业务通过空中发送RLC信令的需求,物联网业务可以是延迟和/或损失容忍的,或者可以由应用层恢复。
1.7、窄带测量精度改进(FDD)
窄带二次同步信号(NSSS)或在服务小区上,MIB-NB在窄带物理广播信道(NPBCH)上的传输可用于进行NRSRP测量,作为使用窄带参考信号(NRS)的替代。与NRS相比,NSSS和NPBCH使用更多的资源元素进行传输,这将减少UE需要处理的子帧的数量,以达到给定的测量精度。
1.8、NPRACH距离增强(FDD)
NB-IoT有时部署在半径100公里的小区内。Rel-13 NPRACH支持最大40km的小区半径,并明确了UE范围。在该距离之外,因为NPRACH是纯正弦波传输,eNB无法精确确认UE的范围。介绍了一种新的NPRACH格式,其子载波间隔为1.25khz,循环前缀为800μs,加上跳频,足以实现120km范围内的距离确定。

1.9、支持Small Cell(FDD和TDD)
NB IoT中定义了eNB功率等级,以允许将eNB部署为microcell、picocell和femtocell,它们使用比宏站更低的最大发射功率。
1.10、缩短系统采集时间(FDD)
在FDD中,当SIB1-NB以16个重复(支持的最大值)被发送时,eNB可以在锚定载波和非锚定载波上发送包含SIB1-NB重复的附加子帧,以允许更快地解码SIB1-NB并降低UE在小区接入期间的功耗。与Rel-13支持最多8次SIB1-NB重复相比,Rel-15允许16次重复。
1.11、UE区分(FDD和TDD)
网络能够在MME中收集和存储关于UE及其业务概况的信息。这可用于根据UE的电池寿命或电源、移动性以及它倾向于具有要传输的业务时来改进UE的调度。
1.12、访问限制增强(FDD和TDD)
在Rel-13中,网络可以在单元特定的基础上在高负载时禁止UE。该特性允许UE在每个覆盖级别上被禁止,使得处于更深覆盖级别并且需要更多次重复传输的UE可以与其他资源密集度较低的UE分开被禁止。
1.13、混合部署操作(FDD)
在Rel-13中,一个独立部署的锚定或非锚定NB-IoT载波只能与另一个独立部署载波一起配置。此功能允许独立部署的锚定载波与带内/保护带部署的非锚定载波一起配置或者带内/保护带部署的锚定载波与独立部署的非锚定载波一起配置。这允许将部署在非LTE频谱的NB-IoT载波,与部署在LTE频谱上的NB-IoT载波相连接。
1.14、功率余量报告功能增强(FDD)
在Rel-13中,UE根据覆盖率从两个表中的一个表生成功率余量报告(PHR),每个表包含四个条目。该特性将Msg3中传输的PHR的粒度提高到16个级别。
1.15、TDD
引入了对TDD的支持,将Rel-13 NB IoT特性与Rel-14特性结合起来:UE Category NB2、双HARQ处理、多载波RACH和寻呼以及OTDOA[1]。支持所有LTE UL/DL子帧配置(除配置0和6外)并且支持所有LTE特殊子帧配置。此外,上面描述的一些Rel-15特性与FDD/TDD无关,因此可以用于两者。





通信人家园 (https://www.txrjy.com/) Powered by C114