针对以上困境,“狭义”联邦机器学习的概念于2016年由谷歌研究人员首先提出,随后成为一个解决数据孤岛问题、满足隐私保护和数据安全的一个可行性解决方案[9]。联邦学习的特征是数据不出本地、各个参与者的身份和地位平等、它能够实现多个参与方在保护数据隐私、满足合法合规要求的前提下进行机器学习,协同地进行模型训练与结果预测,并且建模效果和将整个数据集放在一处建模的效果相同或相差不大(在各个数据的用户对齐( user alignment )或特征对齐( featurealignment)的条件下),从而实现企业间的数据融合建模,解决数据孤岛问题。