(1) 系统目标
TMIS通过计算机网络从全路2000多个信息站,实时收集列车、机车、车辆、集装箱以及所运货物的动态信息,对列车、车辆、集装箱和货物进行节点式追踪,为全路各级运输管理人员提供及时、准确和完整的运输信息和辅助决策方案,实现紧密运输、均衡运输,提高运输生产效率,改善客户服务质量。TMIS建设的根本目的是为了促进客货营销、加强运输管理和深化体制改革。
(2)系统定位
① TMIS与铁路信息化的其它信息系统间有着密切的联系,TMIS系统为财务、统计、机务、电务、工务、车辆、物资等部门业务管理信息系统以及办公自动化、社会化服务、决策支持等综合管理信息系统提供及时、准确和完整的运输生产信息。
② TMIS工程建立和完善了铁路信息技术基础设施,包括环境建设、网络通信、系统平台、人力资源和工作流程等,为铁路信息化建设的持续发展提供了良好的技术条件,带动和促进了其它信息系统建设。
(3) 系统体系结构
坚持集中与分布相结合,实时处理与批处理相结合的系统建构,纵向业务功能系统与横向综合应用系统相结合的原则。在这些原则指导下,引入先进的信息技术应用范式,并将互联网技术引入企业信息系统,广泛地采用了基于Web服务器的应用开发技术和以浏览器为主要形式的人机界面。采用了先进的数据库管理系统,完善数据组织,减少冗余度,提高共享性,对TMIS数据库设置进行了系统的和科学的分类,规范了各类数据库的内容和建置原则,强调原始数据库是3级建库的基础,动态数据库是3级建库的核心。
(4) 网络体系结构
① 采用层次模型对TMIS网络体系结构进行了全面调整。TMIS广域网结构分成骨干网和基层网,分界点设在分局;TMIS机关局域网分成安全生产网、内部服务网、外部服务网,3网之间通过动态物理隔离、防火墙和VLAN等技术实现相互隔离。
② 要求增加局间和分局与路局间的迂回信道,拓宽铁道部—路局的信道,以此增强骨干网络的可靠性;综合运用X.25、数字专线、模拟专线、帧中继信道和信道化E1线路连接分局与站(段),扩大站(段)联网的覆盖面。
③ 优化骨干网路由结构及路由策略,将铁道部、14个铁路局(集团公司)和西安、武汉、徐州3个分局的骨干路由器纳入路由结构的核心区(OSPF0域)。
④ 网络通信协议,规范了IP地址分配方案;制定了统一的域名设计规则。
(5) 原始数据采集
① 原始信息逐级上报。原始信息在站(段)产生后,沿车站、分局、路局和铁道部方向逐级上报、建库和转发。
② 原始信息实时上报。联网报告点通过车站系统实时报告原始信息;配有车号自动识别设备的车站通过 AEI自动采集列车到/发信息,经由车站系统实时上报;有条件的分局也可通过DMIS自动采集列车到/发点,经分局调度系统实时上报。
③ 原始信息集中上报。非联网报告点的原始信息通过车务段系统收集并集中上报;有关行车信息也可通过分局调度系统收集并集中上报。
(6) 运行保障体系
TMIS系统运行保障体系包括基础数据维护、运行生产调度、联机用户支持、网络管理、系统管理、应用管理、安全管理、设备维修、远程教育等。调整方案从工作流程、组织结构和技术选择等方面为各子系统确定了总体框架。
(7) 标准化和规范化
规范系统软件平台,统一用户操作界面,统一基础数据字典,实现编码信息规范化,系统接口标准化,应用软件产品化。
(8) 可靠性和安全性
TMIS调整方案从管理意义上给出了TMIS安全策略和安全事件处理程序的基本框架;从技术层面提出了TMIS安全解决方案,包括物理环境保护、网络安全设计、系统安全设计、应用安全设计、用户安全管理、访问安全控制、攻击防御、病毒防治和安全评估等。
三、2002年铁路运输信息化建设的主要任务
一般红外遥控码的一些参数:
① 载波频率:34K~40KHz,主要集中于38KHz。
② 载波脉冲占空比(高电平脉宽与一个周期宽度之比)通常为1:4或1:3。取1:4的40K载波计算,一个载波周期为25us,一个高电平脉宽6.25us。
③ 整个红外遥控码时间长度一般小于150ms,编码长度(也就是解调后的红外遥控码位数)通常小于34位。
修改以下代码,使U-BOOT支持arm-922t内核。
① 在include/目录下新建文件arm922t.h,内容如下:
#ifndef __ARM922T_H__
#define __ARM922T_H__
#endif
② 在include/目录下新建文件wt-arm9.h,该文件描述了ARM922T中Timer、UART等寄存器的结构及若干宏定义。具体内容要参考相关处理器手册。
③ 在cpu/目录下新建目录arm922t,将目录arm920t下的内容复制后,参考手册分别修改cpu.c、interrupts.c和serial.c,其它文件不修改。
2.2 开发板的支持
建立自己开发板的目录和相关文件。
① 在include/configs目录中添加头文件lh7a400.h。这个文件是lh7a400开发板的配置文件,它包括开发板的CPU、系统时钟、RAM、Flash系统及其它相关的配置信息。其格式可参考include/configs/smdk2400.h。
② 在board/目录下新建wt-arm9目录,创建如下文件:flash.c、lhmemsetup.c、wt- arm9.c、Makefile和u-boot.lds。
◆ flash.c。U-BOOT 读、写和删除Flash设备的源代码文件。由于不同开发板中Flash存储器的种类各不相同,所以,修改flash.c时需参考相应的Flash芯片手册。它包括如下几个函数:
unsigned long flash_init (void ),Flash初始化;
void flash_print_info (flash_info_t *info),打印Flash信息;
int flash_erase (flash_info_t *info, int s_first, int s_last),Flash擦除;
volatile static int write_dword (flash_info_t *info, ulong dest, ulong data),Flash写入;
int write_buff (flash_info_t *info, uchar *src, ulong addr, ulong cnt),从内存复制数据。
◆ lhmemsetup.c。初始化时钟、SMC控制器和SDRAM控制器。
◆ wt-arm9.c。设置各种总线时钟,打开数据Cache和指令Cache,并设置相关内存参数。
◆ Makefile。直接拷贝board/smdk2400/Makefile,作如下修改:
OBJS := wt-arm9.o flash.o lhmemsetup.o
◆ u-boot.lds。设置U-BOOT中各个目标文件的连接地址,直接拷贝 board/smdk2400/u-boot.lds,作如下修改:
.text
{
cpu/arm922t/start.o (.text)
*(.text)
}
2.3 添加网口设备控制程序
在drivers/目录中添加网口设备控制程序dm9000.c 和dm9000.h,其中dm9000.c 主要包括以下函数:
int eth_init (bd_t *bd),初始化网络设备;
void eth_halt (void),关闭网络设备;
int eth_send (volatile void *packet,int len),发送数据包;
int eth_rx (void) 接收数据包。
用中断方式处理数据包的收发,因此还定义了另外两个函数:
void InitInterrupt (void) ,中断初始化;
void dm9000_irq (void) ,中断处理。
以上两个函数在cpu/arm922t/interrupts.c中被调用,最后在drivers/Makefile中加入dm9000.o。
当在网状网络区域内进行行驶时,可实现持续的移动互联网访问。通过为拥有标准 CD/DVD 能力的汽车娱乐系统部署 IP 网状网络连接,用户将能够浏览实时或是缓存的网络传播内容以及流媒体娱乐内容。
社区、IP 服务以及网络公司发现,较之单个用户访问,广泛访问带来的业务模型利润更高。由此,基础 IP 网络访问将会免费提供。
电子系统EDA集成开发环境IDE(Integrated Development Environment)是指根据电子系统设计流程,将设计流程中各个阶段所需要的不同的EDA工具软件集成在一个硬件平台上,进行项目设计开发的软硬工作环境。在此环境中,项目的设计数据通过文件方式在各个EDA工具之间流转,就像工厂里生产流水线上的产品流动一样,直到产品生产全过程结束。
交流固态继电器S/HS固态继电器原理与应用
交流固态继电器SSR(Solid state releys)是一种无触点通断电子开关,为四端有源器件。其中两个端子为输入控制端,另外两端为输出受控端,中间采用光电隔离,作为输入输出之间电气隔离(浮空)。在输入端加上直流或脉冲信号,输出端就能从关断状态转变成导通状态(无信号时呈阻断状态),从而控制较大负载。整个器件无可动部件及触点,可实现相当于常用的机械式电磁继电器一样的功能。
RTEMS(The Rael Time Executive for Multi-processor Systems)是一个基于多处理器的,能够运行在不同处理器平台上的嵌入式操作系统。其应用领域十分广泛,包括航空航天设备(导弹、飞机控制系统),网络设备(路由器、交换 机),掌上设备(电子阅读器、PDA)等。针对不同领域应用的需求差异,该系统的内存管理提供了比较完善的机制。同其它常见的嵌入式系统一样,RTEMS不支持虚拟存储管理,不支持复杂的段页式的保护机制,而采用线性编址方式,即逻辑地址和物理地址一一对应的平面模式,同时支持静态和动态两种管理模式。在系统正常运行时,内存中的映像如图1所示。
关键词:OLED SSD1303 ARM 陀螺仪
陀螺经纬仪通过敏感地球自转的水平分量来测定仪器架设点真北方位的精密仪器,工作情况类似于电子经纬仪,所不同的是电子经纬仪只能测定两个目标的相对夹角,而陀螺经纬仪不仅可以测定目标之间的相对夹角,而且可以测定目标与地理北或真北方位之间的夹角。仪器工作通常在野外进行,环境条件较为恶劣。以前显示部分用液晶实现,带来的问题是除重量和体积外,低温靠加热实现,功耗大,野外作业对电池要求较高。另一个问题是采取任何措施,都无法解决太阳照射下,液晶显示不清楚这个问题,这是由于液晶显示自身特性决定的。
在新一代电子产品设计与应用中,低功耗和高速度已经成为数字电路设计的发展趋势。但是众所再知,芯片的功耗与频率成正比关系,这两个看似不可调和的矛盾,最终导致了各种低压数字器件的出现。如TI公司的TMS320F2812就采用了核心1.8V和外围电路由3.3V供电的架构,但这也同时带来了新的问题,就是大多数外围数字芯片仍为TTL或CMOS逻辑电平,当把微处理器I/O电压移植到较低的节点,而外设仍留在电压较高的节点时,经常会出现微处理器与外设I/O之间电压不匹配的现象。
针对上述问题,德州仪器(TI)推出了AVC及LVC等多款新型双电源电平转换收发器,从而为运行于不同电压节点上的接口设备提供了理想的选择。这些转换产品能够在1.5V、1.8V、2.5V、3.3V与5V电压节点之间进行灵活的双向电平转换,因此非常适用于便携式消费类电子产品、网络、数据通信及计算应用领域。TI的新型双电源电平转换器件能够在保持信号完整性及速度不变的情况下,在接口电压完全不同的两个设备之间进行通信。此外,该系列器件还提供全面的可配置性,如果采用AVC技术,则每条轨可从1.4V配置为3.6V,而采用LVC技术则可从1.65V配置为5.5V。本文介绍带有三态输出且输出电压可调的8线总线双向电平转换器SN74LVCC3245的原理及应用。
1 SN74LVCC3245简介
SN74LVCC3245是8位正逻辑总线收发器,它有两个独立供电电源轨。其中B口被用来跟踪Vccb电压,可以接收的电压范围为3V到5.5V,与此相对应的A口则用来跟踪VCCA电压,可以接收的电压范围为2.5V到3.6V。这种结构允许数字逻辑从一个供电电压为3.3V的系统环境转换到一个供电电压为5.5V的系统环境,反之亦然。
SN74LVCC3245可以应用于数字总线间的异步通讯,完全数据从A总线到B总线或B总线到A总线的数字传递,传递方向取决于方向控制引脚DIR上的逻辑电平。输出允许引脚OE可以用来禁用器件,这样可对总线进行有效隔离。这些控制电路(DIR,OE)是由VCCA供电的。图1示出SN74LVCC3245的引脚排列。
SN74LVCC3245双向电平转换器具有如下主要特点:
·双向电压转换;
·A口输出电压范围为2.3V~3.6V;B口输出电压范围为3V~5.5V;
·控制输入信号VIH/VIL逻辑电平参数VCCA的电压;
·Latch-Up性能超过250mA(每JESD 17);
·ESD保护超过JESD 22标准,具体如下:
2000V人体模型(A114-A);
2000V机器模型(A115-A);
1000V放电设备模型(C101)。
2 真值表和内部逻辑
表1是SN74LVCC3245的逻辑真值表,当OE和DIR均为低电平时,数据由B口传输到A口;当OE为低电平而DIR为高电平时,数据由A口传输到B口;如果OE为高电平,则器件将与外部总线隔离。图2给出SN74LVCC3245的内部逻辑原理图。
表1 真值表
INPUTS OPERATION
OE DIR
L L B data to A bus
L H A data to B bus
H X Isolation
3 SN74LVCC3245在DSP中的应用
DSP以其强大的信号处理能力见长,但控制能力却明显不足。因此,当设计控制口线较多的系统时,可采用双处理器的方法(即采用DSP加控制器力相对较强的普通52单片机)来构成整个系统,这样,DSP作为下位机发挥其运行能力强的优势来进行信号处理,并通过串口与上位机(单片机)通讯,接收其控制指令和设置参数,并将处理好的数据传输到52单片机,而单片机完成数据显示、打印等控制功能。这样,在该系统中就会存在电平不匹配的问题。如系统使用的DSP是TI公司的TMS320F2812,那么,其I/O电源是3.3V,但普通52单片机的数字逻辑电平为5V的CMOS电平,这就需要对两者通讯所用的串口信号线进行电平转换。此外,SPI(serial peripheral interface)总线串口是由Motorola公司提出的一种同步串行外设接口,该接口通常也需要完成TxD和RxD这两根信号线的电平转换,图3所示是一种用SN74LVCC3245完成电平转换的设计方案。
4 结束语
微处理器的I/O电压正从1.8V转移到1.5V,而内核电压能够低于1V.外围设备组件的电压虽然也在降低,但水平通常落后于处理器一代左右.电压降低方面的发展不均带来了系统设计者必须解决的关键性难题——如何在信号电平之间进行可靠的转换。正确的信号电平可以保证系统的可靠工作,而总线收发器是其根本保护。
采用高速高分辨率信号采集卡构成超声探伤