STN</font></a><font color="#000000" size="3">/</font><a href="http://www.cww.net.cn/tech/ATM" target="_blank"><font color="#000000" size="3">ATM</font></a><font color="#000000" size="3">的QoS机制发现,PSTN/ATM的QoS能力实际上是有许多其他(非技术的)有利条件的:</font></p><p><font color="#000000" size="3"> ●在PSTN/ATM上承载的业务较为单一,PSTN仅承载话音业务,ATM目前也是仅仅提供专线业务。单一的业务使得流量特征比较简单,易于预测,而这些使得网络的规划可以非常逼近实际的流量,从而保证网络路径上不存在严重的拥塞。比较IP而言,IP上的应用类型众多,流量复杂,研究表明,Internet的流量模型符合“长相关”的分形特征,这就使得Internet的流量从数学上是不可预测的。</font></p><p><font color="#000000" size="3"> ●PSTN/ATM上承载的电信业务以点对点通信模式为主,而当前IP上的应用业务除了点对点模式外,还存在大量的C/S(客户/</font><a href="http://www.cww.net.cn/tech/·þÎñÆ÷" target="_blank"><font color="#000000" size="3">服务器</font></a><font color="#000000" size="3">)模式和多点模式。业务模式的差异使得IP网络上流量流向十分复杂,难以控制。</font></p><p><font color="#000000" size="3"> ●PSTN/ATM的业务流量较低,尽管目前的PSTN</font><a href="http://www.cww.net.cn/techClass1" target="_blank"><font color="#000000" size="3">交换</font></a><font color="#000000" size="3">机处理的话务量已经很高,但还是远远比不上IP网络骨干的GB级路由器处理的流量。巨大的流量压力使得IP网络无法实现精细的基于“流”或者“连接”的QoS控制。</font></p><p><font color="#000000" size="3"> 因此,简单地照搬现有的PSTN/ATM技术未必能够解决业务和网络更为复杂的NGN的QoS问题。</font></p><p><font color="#000000" size="3"> 然而,如果我们能够把NGN的业务和网络复杂性进行分解和隔离,就有可能在IP上通过借鉴一些电信网的QoS机制来解决NGN的QoS问题。一个最简单的思路是在IP上引入资源管理设备,并根据业务构建逻辑叠加网,通过这个逻辑叠加网实现业务流量的隔离。这样,NGN就变成由多个逻辑叠加网构成的多业务网,但是在每个逻辑叠加网络中仅承载单一业务(或者同一类型)的业务。因此,可以借助电信网的一些QoS机制来提供保证。</font></p><p><font color="#000000" size="3"> 最终解决NGN的QoS的方法既不能单纯地采用IP过载的机制,也不能照搬PSTN/ATM的QoS技术,而应该是两种技术的融合。总之,QoS的本质问题是一个折中问题。我们认为,只有在现有IP的基础架构上,结合电信网络的一些QoS机制和方法,才能够实现满足业务需求的NGNQoS。</font></p><p><strong><font color="#000000" size="3"> 3、NGNQoS的核心</font></strong></p><p><font color="#000000" size="3"> NGNQoS的核心是资源/流量管理的问题。</font></p><p><font color="#000000" size="3"> 深入分析IP难以获得有效QoS的原因,我们认为其根本在于IP是一个终端控制的网络。具体体现在:</font></p><p><font color="#000000" size="3"> (1)流量的发送不受网络限制。网络中流量的发送受终端控制,事实上,在TCP协议中,流量的拥塞控制依赖于终端的自律,而非网络的控制。</font></p><p><font color="#000000" size="3"> (2)流量的流向不可预测。IP是一个无连接每包路由的网络,不但流量的流向对网络是透明的,而且流量的传输路径也是不断变化的。</font></p><p><font color="#000000" size="3"> (3)业务流不可管理。IP仅仅对包进行处理,对流不识别、不处理。业务流的控制在终端进行。</font></p><p><font color="#000000" size="3"> 在传统的BestEffort网络中,上述因素使得IP网络的拥塞几乎是不可避免的。特别是放到一个较长的周期去考察的话,短时间的、突发性的拥塞是难以有效控制的。</font></p><p><font color="#000000" size="3"> 在NGN中,如果要解决网络的拥塞,提供有效的QoS保证,就需要解决上述问题。而这些问题的关键是流量管理的问题,对于网络而言,流量管理的本质是资源管理。如何限制流量的进入?如何引导流量的流向,并为其保证足够的资源(带宽)?如何根据业务的需求对流量进行管理和控制?这些都是实现NGNQoS的关键。</font></p><p><font color="#000000" size="3"> 实际上,现有的IPQoS技术也都试图从不同的侧面去解决上述问题。Intserv欲通过引入</font><a href="http://www.cww.net.cn/tech/ÐÅÁî" target="_blank"><font color="#000000" size="3">信令</font></a><font color="#000000" size="3">机制(RSVP)在网络中预留资源,并要求实际的流量和流向满足预留的资源要求,以实现QoS。然而,端到端的资源建立和维护的成本太高,不具备良好的扩展性。Diffserv试图通过优先级区分的方法将需要保证的流量和不需要保证的流量隔离开来,达到限制流量的目的(低优先级的流量在网络拥塞时会被丢弃)。然而,由于无法控制流向,无法完全避免局部的拥塞,加之缺乏上层的业务信息,流量的优先级往往只能够通过判定流量的应用类型判定,因此无法做到基于“业务流”的标记。Diffserv可以实现相对的QoS保证,但是Diffserv较低的资源利用率(只有当网络优先级流量的资源利用率低于10%时,才能保证这部分流量的QoS)和不能提供绝对的QoS保证,使得它很难成为一个解决NGNQoS的理想方案。</font></p><p><font color="#000000" size="3"></font></p> | 通信人家园 (https://www.txrjy.com/) | Powered by C114 |