通信人家园

标题: 城域网的建设与应用(转载)  [查看完整版帖子] [打印本页]

时间:  2004-11-30 15:08
作者: shujuren     标题: 城域网的建设与应用(转载)

城域网的建设与应用(一)
作者:周志敏 发文时间:2003.12.23
目录 

1.概述
2.新一代SDH城域网多业务传输平台MSTP
3.城域网WDM方案
4.光以太网城域网 
5.以ATM为基础的多业务平台 

1.概述 

城域网是数据骨干网和长途电话网在城域范围内的延伸和覆盖,它承担着集团用户、商用大楼、智能小区等业务接入和通路出租等纷繁复杂的任务,需要通过各类网关实现话音、数据、图像、多媒体、IP接入和各种增值业务及智能业务,并与各运营商的长途网和骨干网实现互通。城域网不仅是传统长途网与接入网的连接桥梁,更是传统电信网与新兴数据网络的交汇点及今后三网融合的基础。   

近年来,以10G SDH和DWDM技术为代表的光纤传输技术有了重大突破,骨干网带宽从Gb/s向Tb/s发展;在企业和居民用户端的网络速率,则随着G比特以太网技术进入商业应用而向Gb/s发展。这两个趋势使城域传送网产生了巨大的带宽压力和多种新的功能需求,主要包括:高带宽、大量的用户节点及众多的类型、灵活的带宽分配、多业务支持和协议无关性、保护和自愈以及便捷的网络管理等。   

从目前市场需求的统计来看,城域网所承载的业务将从原来以语音为主转变为以数据为主。业务内容从Web浏览、网上聊天、电子邮件等非实时业务向多媒体图像、语音和在线游戏等实时性业务转变。在新的宽带IP城域网中,数据业务将成为主导业务,但并不是说完全取代传统的语音业务。到目前为止,基于时分复用的语音业务仍是电信运营商的主要的稳定收入来源,市场上仍存在大量传统专线接入和交换需求。所以在建设城域网时不能一味地寻求技术的先进性,必须考虑到目前现状及未来的可扩展性,建设一个能服务于多种业务的城域网平台,在这种背景下MSTP(多业务传送平台)就应运而生。更进一步来讲,目前SDH已成为公认的未来信息高速公路的主要物理传送平台。这样,骨干网和城域网的SDH会对下一代的传输交换系统选择产生影响。现在,在光传输市场出现了各种基于SDH的过渡产品解决方案,它们的共性就是建立统一的多业务平台来迎合来自企业集团用户日益增长的快速宽带多业务要求。MSTP不但可以完成TDM业务的传送,而且还可接入ATM和ETN/IP业务,实现二层桥接和交换功能,完成数据业务的接入和传送,是实现综合光网络业务运营的技术保障。通过这种方式建设的宽带专线网可提供64k~155M的专线业务,包括以太网、ATM业务,也可提供波长出租业务,满足本地运营商和集团用户的互联需求。 

目前广域网带宽已经达到数百Gb/s,而宽带接入网的建设也已经步入快速发展的轨道。IP-DSLAM和5类线以太网接入使用户接入速率达到数百Kb/s到数Mb/s。采用SDH的传统城域网成为发展宽带业务的瓶颈。目前已出现城域网建设的高潮。目前主要的宽带城域网技术方案有以下四种。 

新一代SDH城域网多业务传输平台MSTP 

2.1SDH多业务传输平台MSTP城域网 

新一代SDH多业务传输平台MSTP城域网具有以下特点: 

2.1.1高集成度。SDH处理专用芯片和光收发器的进步和成熟使SDH系统的集成度不断提高, NGSDH的高集成度表现为设备体积紧凑,端口密度高,通过很小的空间提供超大的接入容量和业务调度容量。 

2.1.2MADM集成和业务调度能力。新一代SDH设备的高集成度可使系统集成多个分插复用ADM,同时还融合了大容量同步交叉连接(SDXC)矩阵,可灵活实现多个ADM间的业务调度,构成多分插复用MADM(Multiple-ADM)。 

2.1.3多业务传送能力。新一代SDH在保持传统SDH优势的同时,融合了ATM和IP技术,针对不同的业务采用不同的传送方式,形成了一个统一的多业务传送平台。支持STM-4C 、STM-16C等级业务的透明传送。 

STM-4C 、 STM-16C等级业务用于承载ATM、 POS(Packetover SDH)等数据业务。新一代SDH在透明传送 STM-4C 、 STM-16C等级业务的基础上,进一步融合了ATM信元统计复用和交换、IP帧统计复用和交换等功能,在充分发挥SDH技术特点的同时(快速环网自愈环倒换、高QoS保证),通过数据业务统计复用技术,提高带宽利用率,可广泛应用于宽带城域网。 

2.2具备弹性分组环RPR功能 

通过RPR接口板和SDH设备的交叉功能,在SDH环路上开辟N×VC-4通道用于IP业务的传送,在这个IP环路中,实现Package ADM ,空间重用。同时通过流分类、业务优先级等技术满足以太业务的QOS功能,通过VDQ等带宽的公平算法保证各节点的接入带宽,环网保护技术增强业务的可靠性。RPR是一种与物理层无关的二层技术,已明确提出将SDH作为其物理载体。所以在NGSDH上实现RPR是对以太网业务的一种很好的解决方案。 

2.3智能化管理 

传统的SDH管理基于单网元,业务配置、设备性能和告警等管理功能的操作对像为单网元。SDH的新一代管理是则面向整个网络,业务配置、设备性能和告警等功能直接基于面向用户提供的网络。新一代SDH配置业务时,只需指定网络业务的源和宿及其相应要求,网络业务即可快速自动生成,而不需象传统SDH那样逐个进行网元设置,系统可提供端到端的业务性能、告警监控和故障辅助定位。此外,新一代SDH还支持用户等级定义、带宽租用和计费等功能,智能化特性是新一代SDH的一项显著特征。 

SDH具有灵活的带宽调整能力,适应宽带城域网以太网业务的大带宽传送要求,通常采用两种方式实现。一种是采用ML-PPP(Multi-Link Point-to-Point Protocol)捆绑多个VC-12/VC-3通道传送以太网帧,另一种是采用多个VC-12/VC-3/VC-4级联或虚级联通道传送。其中,由于虚级联(VC-v12-Xv/VC-3-Xv/VC-4-Xv)方式兼容传统的SDH网络,从而得到广泛应用。 

对于以太网承载,应满足对上层业务的透明性,映射封装过程应支持带宽可配置。在这个前提之下,可以选择在进入VC映射之前是否进行二层交换。不论是否交换,对于二层交换功能,良好的实现方式应该支持如STP、VLAN、流控、地址学习、组播等辅助功能。我国行标中规定可以选用三种以太网映射方式中的一种:LAPS方式(ITU-TX.85)、PPP方式(IETF系列RFC)、GFP方式(ITU-TG.704)。对于ATM接口,在映射入VC之前,提供ATM统计复用和VP、VC交换功能。对于宽带数据业务的映射,MSTP还应该支持低阶和高阶的VC级联功能,包括相邻级联和虚级联。 

3.城域网WDM方案 

随着技术的进展和业务的发展,WDM技术正从长途传输领域向城域网领域扩展,当然,这种扩展不是直截了当的,需要针对城域网的特定环境进行改造,其主要特点和要求可以归结如下几个方面。 

首先,采用WDM后,容量有了大幅度的增加,至少几十倍,且可以提供某种形式的WDM环保护。其次,应用WDM后容许网络运营者提供透明的以波长为基础的业务。这样用户可以灵活地传送任何协议和格式的信号而不受限于SDH格式。特别是对于应用在城域网边缘的系统,直接与用户接口,需要能灵活快速地支持各种速率和信号格式的业务,因而要求其光接口可以自动接收和适应从10Mb/s 到2.5Gb/s范围的所有信号。而对于应用在城域网核心的系统,则将来有可能还会要求支持10Gb/s的SDH信号和10Gb/s的以太网信号。最后,城域网WDM系统还应具备波长可扩展性,新的波长应能随时加上而不会影响原有工作波长。这样,系统可以通过简单地增加波长而迅速提供新的业务,极大地增强了运营者的市场竞争能力。 

城域网WDM系统的主要不足之处在于不能有效灵活地将低速率信号汇聚进较昂贵的波长通路;此外,不能动态地配置波长,实现光层灵活连接;最后,目前其成本仍然较高。 

总的看,城域网WDM的演进可以分为下述几个步骤: 

①在城域网敷设WDM的主要目的是解决城域网枢纽点光纤耗尽的问题。 

②逐步敷设OADM形成光自愈环,将大量现有的SDH自愈环汇聚到光自愈环。 

③引入OXC互连大量的光自愈环形成光网状网结构,从而带来网状网结构的大量好处,还能提供端到端波长业务。 

当然在合适的阶段需要在OXC的基础上引入自动交换光网络(ASON)进一步实现动态分配部署波长通路以适应 

业务量的需要。 

4.光以太网城域网 

近来以太网最重要的动向是向城域网乃至广域网的扩展。从技术上看,以太网是一种很简单的解决方案,只需要最少量的规划、设计和测试工作,并且应用多年,为用户熟悉,业务指配时间可以减少到几个小时或几天。其次,以太网是标准技术,互换互操作性好,具有广泛的软硬件支持,成本低。再者,以太网是与媒体无关的承载技术,可以透明地与铜线对、电缆和各种光纤等不同传输媒体接口,避免了重新布线的成本。从结构上看,以太网正以前所未有的端到端解决方案面目出现,消去了其他解决方案所必不可少的网络边界处的格式变换,减少了网络的复杂性。此外,以太网是具有很好扩展性的解决方案,其速率可以从10Mb/s、100Mb/s、1Gb/s一直扩展到10Gb/s。从管理上看,由于同样的系统可以应用在网络的各个层面上,因此网络管理可以大大简化。尤其值得一提的是,由于很多用户已经熟悉了以太网,因此培训工作简化,新业务可以拓展得更快。采用吉位以太网GbE和万兆以太网10GbE直接在裸光纤或波分复用(WDM)光缆网上架构宽带IP城域网。 

目前L2/L3一体化的吉位以太网路由交换机的背板容量已经达到几百Gb/s,数据包通过量达每秒一亿个以上。可以以线速进行第三层IP/IPX选路和第二层无阻塞交换。支持冗余端口,生成树,多选择路由和冗余路由器协议增加系统可靠性;可以提供上百个1000BASE-X端口。提供带宽管理、优先权和基于策略的QoS;可以方便的通过HTTP、SNMP、RMON、本地和远程CLI的进行灵活管理,而价格只是骨干网高性能路由器的几分之一;将CWDM直接装在以太网路由交换机端口上可以进一步降低成本。光以太网城域网的建设和运营成本不仅低于MSTP和WDM城域网,也低于用各个网路由器架构的宽带IP城域网,光以太网城域网可以提供VPLS虚拟专网,比 MPLS-VPN更便宜有效。 

对于环型拓扑光网适宜采用弹性分组环(Resilient Packet Ring)。环路的两侧都可以用来传输数据,又可以发挥自愈恢复环的功能,大大提高利用效率。目前IEEE成立802.17工作组,IETF成立IP oPTR组来发展这一技术,制定相应标准。 

要定义UNI和EVC首先要确定以太网业务的属性包括:物理接口、带宽概况、服务性能(CoS)和CoS标识符(ID)、业务帧递送和VLAN标记支持以及业务复用等。 

然而,原来以太网用于局域网,QoS不是问题,当试图扩展应用到公用电信网时需要提供随用户而异的QoS,而目前以太网还没有机制能保证端到端性能,无法提供实时业务所需要的QoS和多用户共享节点和网络所必需的计费统计能力。其次,以太网原来是为局域网企事业用户内部应用设计的,缺乏安全机制保证,即便有需求也是由高层协议来处理,当扩展到MAN和WAN以后,上述利用高层协议的处理方法就无法接受了,需要开发新的安全机制。第三,以太网主要用于小型局域网络环境,网管能力很弱,且目前只有网元级的管理系统。第四,以太网交换机的光口是以点到点方式直接相连的,省掉了传输设备,无法提供故障定位和性能监视,保护功能也难以实现。最后,尽管以太网作为局域网应用是一项久经考验的技术,但是用于公用电信网特别是广域网环境仍然是一项未经测试的新技术,其设备是否能提供大型电信级公用网所必需的硬件和软件可靠性也需要实践和时间的验证。总的看,只有妥善地解决了上述主要问题后,传统以太网才能顺利地应用于大型公用电信网环境。 

5.以ATM为基础的多业务平台 

ATM是一种出色的多业务平台技术,而且由于其固有的设计已经充分考虑了业务的QoS问题,因此可以为IP或其他任意客户层信号提供面向连接的、带宽可控、安全性好、延时小的高质量业务。特别是目前在城域网中应用的ATM VP环技术利用在SDH骨干网上为ATM业务量生成虚通道VP的方式可以使SDH网更有效地承载数据流。 

对于未来网络最重要的IP客户层信号而言,将IP与ATM结合可以综合利用ATM的速度快、颗粒细、多业务支持能力强的优点以及IP的简单、灵活、易扩充和统一性的特点,达到优势互补的目的。由于ATM具有固定的信元长度,又工作在链路层,因而是速度最快的分组交换技术。这种技术具有较强的流量工程能力,可以为不同类型的业务流建立不同的通道,根据业务流负荷和阻塞情况疏导不同链路,确保实时业务的QoS。然而其主要缺点是网络体系结构复杂重复;传输效率较低。在网络扩展性方面,ATM的分段和组装(SAR)功能将随着接口速率增加而变得十分复杂困难,速率难以提高。此外,ATM的连接建立信令较复杂,选路灵活性不高;硬件投资高,运行维护管理复杂,特别是作大型路由配置时耗时耗力;对于较短的数据包,链路建立时间远长于网络数据传输延时,其间无法传数据,在高速条件下成为重要的带宽损失。 

简言之,以ATM为基础的多业务平台最适用于多业务电信环境以及服务质量要求较高的IP业务,主要应用于网络边缘多业务的汇集和一般IP骨干网。由于其扩展性受限,高业务量下的性能表现不理想,ATM VP环也不支持网状网结构,因而以ATM为基础的多业务平台不太适合超大型IP骨干网应用。一般说,对于那些已经敷设了核心ATM网而计划扩展到网络边缘的大型电信运营公司,ATM VP环不失为一种可选的解决方案。但是对于预计近期IP业务量会持续大幅度攀升,网络规模需要大幅度扩展的情况,则以ATM为基础的多业务平台不是一种长远解决方案。 

尽管目前宽带业务传输主要是IP数据,由于目前的IP网控制管理,结算计费能力差,只能靠包月收费,最受运营商青睐的是基于新一代SDH的多业务传输平台MSTP。运营商将IP业务纳入SDH专线或虚拟专网IP-VPN,这样就可以方便地管理计费。新一代SDH不仅提高了性能价格比,还解决了传输以太网帧的效率问题成为多业务传输平台。成为当前宽带城域网建设的主流。【未完待续】


时间:  2004-11-30 15:09
作者: shujuren     标题: 城域网的建设与应用(二)

城域网的建设与应用(二)
编者按:上一篇文章《城域网的建设与应用(一)》我们介绍了城域网的概述、新一代SDH城域网多业务传输平台MSTP、城域网WDM方案、光以太网城域网、以ATM为基础的多业务平台本篇我们将介绍IP城域网建设、城域网层次划、宽带 IP城域网骨干网络技、IP城域网路由规划、新一代IP城域网解决方案。 

目录 

IP城域网建设
城域网层次划分 
宽带IP城域网骨干网络技术
IP城域网路由规划
新一代IP城域网解决方案 

1.IP城域网建设 

随着基于IP的业务种类的增加,采用基于IP的网络技术建立支持多种业务的统一网络平台已经成为一种经济的、高效率的做法。但在建设中应当注意网络的扩展性和可靠性等问题。宽带IP城域网的技术要求网络可扩展性根据目前互联网的业务需求及社区网建设的全面铺开,近几年网络用户数量和网上的业务将成倍增长。这种业务趋势要求宽带IP城域网具有很好的可扩展性。这种可扩展性包括:骨干交换节点设备的容量扩容性、用户端口的可扩容性和中继带宽的可扩容性等。 

目前,宽带IP城域网建设的技术方案可以分为两大类:一个是 IP over Fiber;另一个就是IP多业务平台系统,包括IP over Metro-DWDM 、 IP over SDH 、 IP over MSPP等。不同的技术有不同的市场切入点,不同的城市由于规模、经济发达程度和用户需求等的差异,对城域网技术的选择上会存在一定的区别;另外,不同的运营商由于市场定位、网络资源、运营权、品牌和用户规模等的差异,在技术选择上也会不同,尤其是新运营商,几乎从零起步,面临传统电信运营商的巨大竞争压力,更应该使技术的选择对自身的快速发展、核心竞争力的形成以及运营提供直接帮助。对运营商来说,如何使IP城域骨干网更加有效地配合接入网,尤其是以太网接入网,进行无缝连接,也会成为影响城域网技术选择的重要因素。 

由于各运营商网络基础设施上的差异,组建IP城域网采用的技术有所不同,但为了IP城域网能够尽快创收,接入更多的用户,获得更高的效益,如何为更多的集团用户、家庭用户提供种类繁多,性能可靠的IP业务,是各运营商组建IP城域网时关注的重要课题。除了宽带IP城域网带给用户的基本业务,如宽带IP接入、话音和视频接入以外,最近又出现了能够为运营商吸引更多用户、为用户带来更多应用的IP接入边缘层的概念。接入边缘层是在POP点中对用户接入的IP数据流进行了针对每个用户的区分和管理,能够支持所有的宽带接入方式,如以太网、ADSL、 Cable Modem 、无线接入、ATM和帧中继等。同时在这个IP边缘层提供了各种增值业务和安全性的保证,将IP接入网变成一个智能的接入网,能够提供有特色的IP业务,使运营商在竞争激烈的IP市场中处于领先的地位。 

宽带IP城域网的定位对于不同运营商可能侧重点也不同,但一般来说都认为是各运营商宽带IP骨干网络在各城市范围内的延伸,可以支持高速上网、带宽租用、虚拟专用网(VPN)、窄带拨号接入、视频、话音各种多媒体业务,是以电信网络的可管理性、可扩充性为基础,来满足政府部门、企业、个人用户对各种带宽的基于IP的多媒体业务的需求。其典型技术特征是在城域范围内实现了传输的宽带化和节点的宽带化,使得城域网从接入到核心各个部分都实现了宽带化。 

2.城域网层次划分 

宽带IP城域网的网络结构通常分为三层:核心层、汇聚层和接入层。核心层网络完成高速数据转发的功能。汇聚层网络节点则主要实现扩展核心层设备的端口密度和端口种类,扩大核心层节点的业务覆盖范围,汇聚接入节点,解决接入节点到核心节点间光纤资源紧张问题,实现接入用户的可管理性等功能。接入层网络节点主要是将不同地理分布的用户快速有效地接入骨干。 

城域网的层次划分可以从两个方面来分析,纵向和横向划分。所谓纵向划分是按照所对应的个同网络分层加以区别,比较常见的是分成传送网和业务网,传送网是业务网的物理承载平台,应该适应不同业务网的相关需求。 

横向划分时,常把城域网分为3层结构:核心层、汇聚层和接入层。值得强调的是城域网的层次分为3层并不是固定的,这与城市规模、业务类型等一系列因素都有关系。在中小城市,则可以简化为两层,只有核心层、汇聚层(汇聚层和接入层综合在一起);而在另外一些城市,可能汇聚层与核心层集成在一起,只有核心层(汇聚层)与接入层。运营商根据自己的网络规模、业务分布来决定网络的层次。 

另外,随着城域网网络规模的扩大,其接入层面与客户网络有了越来越多的重叠,接入网络有被边缘化的趋势。特别是在激烈的竞争区域,后来的运营者对于商业大厦、写字楼等大用户,将光纤延伸至大楼,直接与企业的LAN相连,从而使城域网接入部分等同于客户网络。 

3.宽带IP城域网骨干网络技术 

作为网络连接和交换的平台,城域网骨干网络需要快速的交换和转发能力,还要有冗余链路以保证网络安全可靠以及良好的流量控制和QoS等。目前骨干网技术突飞猛进,针对不同的运营环境有ATM、GE、POS、DPT等多种技术供运营商选择。对于运营商来说,首先要综合考虑技术的发展趋势、技术特点、技术成熟性和标准化。例如万兆以太网技术尽管会是未来城域网的发展趋势,但是就目前技术发展程度而言,GE无论是在技术成熟度、标准化方面,还是在价格等方面都是一个更合适的选择。其次对运营商来说要对所建城域网现在和将来要开放什么业务,面对的重点用户群是谁等有一个清晰的目标,这样才能更好地选择合适的技术。例如ATM技术适合于初期数据业务量不是很大,希望能兼顾话音和基础数据业务,以占领部分集团客户市场的综合业务运营商建立一个多业务城域网,但它并不适合那些新兴的ISP。另外对运营商来说,投资成本也是考虑的一个重要方面,因为建设城域网的目标一定是要建一个可赢利的网络。例如建设一个ATM多业务网络的成本要比纯IP网络的价格高,而对于一个纯IP网络来说,完全采用GE技术要比采用POS技术的成本更低。还应看到的是,不同的技术有不同的切入点,不同的运营商由于市场定位、网络资源、运营权、品牌和用户规模等的差异,在技术选择上肯定会不同。就目前来说,基于FTTB+LAN的以太网接入网将可能成为主流的接入方式。因此对运营商来说,如何使宽带IP城域网更加有效地配合接入网,尤其是以太网接入网进行无缝连接,也会成为影响城域网技术选择的一个重要因素。 

4. IP城域网路由规划 

路由规划是IP城域网建设中的核心问题,规划何当与否直接影响到整个城域网的可靠性及效率。 

4.1路由协议选择原则 

在城域网中,选择合适的路由协议非常重要,路由协议有域内路由和域间路由两种基本类型。域间路由协议主要有边界网关协议(BGP)和外部网关协议(EGP)等;域内路由协议主要有开放式最短路由优先协议(OSPF)、中间系统路由选择协议(IS-IS)和路由信息协议(RIP)/RIP2等。选择路由协议需考虑一以下因素: 

4.1.1路由协议的开放性;开放的路由协议可得到不同厂家的支持,使网络互通、未来升级和扩充能力得到保证; 

4.1.2网络规模及复杂度;不同协议对网络规模及复杂度的支持能力会有所不同,例如RIP路由协议不适合规模较大且复杂的网络; 

4.1.3路由协议的先进性和成熟度;为了使今后网络升级更加方便和顺利,必须考虑这种路由协议是否具有先进性,是否为当今主流协议。 

4.2域间路由协议选择及相关策略 

在铁通南宁城域网建设初期,网间路由采用静态路由/默认路由方式。随着顽网络规模的扩大,该城域网平滑过渡为单独的自治系统(AS)域,与骨干网的Cisco12406之间采用外部边界网关协议(EBGP)对等连接,通过BGP路由表控制机制,对向AS外交换的和从AS外接受的路由表内容进行控制,从而对进出AS的路由信息进行过滤,有效减轻核心节点负担,提高路由效率。 

4.3域内路由协议选择及相关策略 

目前,广泛采用的域内路由协议有OSPF和IS-IS。OSPF是层次化路由协议,具有很好的可扩展性。城域网在划分域时,通常将核心节点和汇聚层路由器上连核心层的IP接口划分为骨干域(backone area),负责与外部网络交互连接其他子域;每个汇聚层理由设备下连的接入层部分作为一个独立的子域,个子域均与主干域直接相连。扩容时也采用这一规则划分子域。与OSPF类似,IS-IS是ISO标准路由协议,也是开放式链路状态路由协议。但二者存在不同之处:(1)IS-IS标准化程度更高更成熟;(2)IS-IS支持无连接网络服务(CLNS)协议和多种三层协议(IP、网际包交换协议(IPX)等),OSPF仅支持IP;(3)IS-IS支持多个2级域,具有良好的扩展性,OSPF只有单一的骨干域;(4)大多数主流设备支持OSPF,支持IS-IS的设备相对要少一些。 

5. 新一代IP城域网解决方案 

弹性分组数据环RPR(Resilient Packet Rings) 是由IEEE 802.17工作组正在开发的一个标准,以优化在MAN拓扑环上数据包的传输。该技术结合IP的智能化、以太网的经济性和光纤环网的高带宽效率和可靠性。利用空间重利用技术、统计复用和保护环提高了带宽的利用率;充分简化了网络层次,消除了网络功能上的重复性,使得协议开销最小;同时还支持业务分级(SLA)以及即插即用等特性,实现了节点对网络资源的公平利用。 

RPR的基本结构是一个缓存器插入环BIR,在任何一个节点都存在三个缓存器,即发送缓存器,接收缓存器和转发缓存器。到达节点的帧如果通过地址匹配认为是目的地是本地,则把帧接收到本地接收缓存器,如果目的地不是本地,则通过转发缓存器发出。而本节点要发送的帧则通过发送缓存器发送数据。在单播的情况下,RPR支持空间重利用协议,即不同用户间的数据帧可以经由环上不同的路径同时在环中传输,这是由于所传输的数据帧是在目的节点而不是象FDDI那样在源节点剥离开网络。 

RPR的具体实现方案可以分为三类:独立式的基于2层的RPR实现方案;基于路由器的单卡RPR实现方案;基于MSTP的RPR实现方案。对于这三种RPR的实现方案,都各有厂家推出相应的产品。独立式的基于2层的RPR实现方案主要适用于IP城域网的接入层和汇聚层,是目前最成熟的一种解决方案。有的厂家将MPLS技术、时钟同步技术、CWDM技术和电视视频广播技术与这种2层的实现方案结合在一起,从而提供面向IP优化,并同时支持TDM业务的宽带多业务解决方案。另外,有的厂家推出的基于2层的RPR产品具有很强的组网能力,可以支持线性、相切环、相交环等拓扑结构以及双节点互连(DNI)跨环保护等。具有这些增强功能的基于2层的RPR产品也可以应用于小城市中IP城域网的核心层。 

基于路由器的单卡RPR实现方案主要应用于IP城域网的核心层和汇聚层,多数厂家都是以现有的路由器产品为平台,通过增加板卡来实现RPR的功能。这种实现方案可以看作是对现有路由器组网的一种优化,在节省光纤资源的同时,可以大大加强其保护性能,获得50ms的环路保护功能。 

基于MSTP的RPR实现方案,实际上是在MSTP环网带宽上划分出独立的通道来支持RPR技术。与传统SDH相比,虽然MSTP引入了2层交换技术以实现以太网业务的带宽共享,并通过GFP实现以太网帧到SDHVC容器的映射,以及采用了虚级联和LCAS技术增强虚容器带宽分配的灵活性和可靠性。但是由于以太网技术应用于环型网时固有的缺点,很多厂家都在考虑将RPR技术引入新一代的MSTP中,从而为支持数据业务提供全面的解决方案。 

在TDM业务占主导地位时,基于MSTP的RPR实现方案将成为最佳的多业务传输平台,但是其产品的商用还有待时日;而在数据业务占主导地位时,独立的基于2层的RPR实现方案将成为最佳的多业务传输平台,目前这种实现方案已经有了较成熟的产品并得到了大量的应用。在IP城域网中由于处理的业务主要是数据,所以可以预计独立的基于2层的RPR实现方案以及基于路由器的RPR实现方案作为一种很好的优化解决方案将广泛应用于IP城域网的建设中。【未完待续】

时间:  2004-11-30 15:09
作者: shujuren     标题: 城域网的建设与应用(三)

城域网的建设与应用(三)
编者按:上一篇文章《城域网的建设与应用(二)》我们介绍IP城域网建设、城域网层次划、宽带 IP城域网骨干网络技、IP城域网路由规划、新一代IP城域网解决方案。 本篇我们将介绍以下内容: 

目录 

城域以太网技术
城域光传送网
城域传输网存在的问题 

1. 城域以太网技术 

以太网技术的应用范围也从早期单纯的LAN逐步向城域网(MAN)发展,即所谓的城域以太网(Metro Ethernet)。城域以太网主要面向的是城区内的企业用户,其优越性表现在三个方面: 

①以太网低廉的成本,包括设备成本及连接成本; 

②网络管理及工程人员对以太网技术已非常熟悉; 

③以太网接入速度的灵活性,用户可以向网络服务供应商订购从1Mbps到1Gbps范围内的任意接入速度,并且可以根据企业的需要灵活调整,这一点是现有的诸如桢中继,ATM等所无法比拟的。 

目前,城域以太网还只能提供城区范围内的点对点连接服务,主要是提供企业的不同分部网络间的互连,企业网络或大楼向广域网(WAN)接口的连接等。因为以太网技术的本质是在一个共享传输媒介上提供多点接入方式,因此当前的点对点连接服务并没有充分发挥以太网技术的特点。并且,对于企业用户而言,其分支办公室网络可能分布在几个城市内,因此,它们真正需要的是能够覆盖多个城市范围的网络接入。对于这两个问题,当前已有一些网络服务供应商在尝试利用虚拟局域网(VLAN)提供多点到多点的以太连接。 

VPLS(Virtual Private LAN Service)是为了用于企业分支办公室局域网互连的解决方案。它有效的结合了IP/MPLS,VPN,以太网交换等多种技术各自的特点,为广域范围的多点到多点LAN互连提供了实现基础。从连接方式上来看,VPLS利用IP/MPLS的广域骨干网络为企业用户提供了一种仿真的LAN连接,因此也被称为透明的LAN服务(Transparent Lan Service——TLS)。从网络拓扑结构与运营维护来看,VPLS则提供了与VPN类似的服务,唯一的区别在于VPLS的网络边缘节点采用了链路层(即第二层)桥接技术,而VPN则采用了第三层路由技术。 

VPLS网络结构显示了企业用户A与B分别通过VPLS服务连接各自的三个分支结构局域网,这里的关键在于网络运营商的边界设备(Provider Edge——PE),其上运行了支持VPLS相关特性的协议。用户的各个分支局域网通过PE接入到网络运营商的IP/MPLS骨干,并形成一个得力的VPLS域,属于同一个VPLS域的各个分支局域网相互之间可以以LAN方式传递数据流。一个PE上的不同接口可以分别用于不同VPLS用户的接入,这时,PE上为每一个VPLS用户创建一个分离的VPLS进程,用于该VPLS域的通讯管理。这样就保证了即使是多个企业通过同一个PE接入同一个骨干网络,它们的数据流也是逻辑上相互独立的,互不影响,这就充分保证了用户数据的私密性。 

为了完成不同分支站点的连接,在服务于同一VPLS域的PE之间需要建立全网状的互连(即所谓的Full-mesh),这是通过IP/MPLS的标签交换路径(LSP)建立的数据隧道(Tunnel)。前面提到了,PE向用户提供了基于以太网的桥接接入方式,也就是说,PE可以直接接收来自用户分支局域网的以太封装格式的数据桢,并根据数据桢中的MAC地址信息决定将数据转发到合适的LSP上以送达另一端的分支局域网。PE上运行的VPLS协议支持特性使得PE上用于连接用户网络的接口可以象一个桥接设备一样提供二层交换和MAC地址学习的能力。通过MAC地址学习,PE上的每一个VPLS进程都为自己的VPLS域创建并维护一个MAC地址表。当接收到数据桢时,VPLS进程首先查询桢头中的目的MAC地址与MAC地址表中的表项是否有可匹配的。如果有,则数据桢被直接转发到对应的LSP上进行传输;如果没有匹配,则同一数据桢被广播到服务于同一VPLS域的其它逻辑端口上。等待PE设备从拥有这一MAC地址的主机上收到数据而学习到这个地址时,MAC地址表则被更新,而接下来的数据桢则可以被正常转发,这与以太网交换机的工作原理是基本相同的。    

PE上的VPLS支持还包括了另外两个特性。首先是服务于同一VPLS域的PE之间的信令机制,信令机制主要被用于LSP的建立以及MPLS标签的分配过程。主要的信令机制可有两种选择:基于LDP协议的信令和基于BGP协议的信令,这两种机制的细节在有关MPLS技术及MPLS VPN技术的文献中都已有介绍,在此就不再过多论述。这两钟机制各自有其优缺点,基于LDP协议的信令机制实现比较简单,它是通过在每一对PE之间建立点到点的LDP会话来完成信令过程的。而且,由于LDP协议提出的较早,目前已有许多厂商的产品支持这一机制。不过由于其点到点的会话建立,LDP协议在大型网络中的可扩展性较差;并且,由于以太网的本质是多点接入的,因此LDP在此并不太适合。为此,IETF PPVPN工作组正在制定LDP的扩展协议以支持多点连接特性。相对而言,基于BGP协议的信令机制则可以充分利用BGP路由反射器的特点,这样PE只需路由反射器建立信令会话即可,这就大大提高了可扩展性。同时,BGP协议还可以支持跨越多个自治系统(AS)网络结构,这对于多个网络运营商并存情况下的VPLS实现非常有利。不过,也有许多运营商担心BGP协议的复杂性会为网络运营管理带来较大的困难。 

另外一个特性则是自动发现机制,这对简化VPLS网络的管理与运营是相当重要的。自动发现是指当一个新的PE被增加到网络中时,所有属于同一VPLS域的其它PE可以自动的发现这一新的PE并自动完成相应的LSP建立过程。针对两种不同的信令机制也存在着两种自动发现机制。在采用了基于BGP协议的信令机制的情况下,新加入的PE只需与BGP路由反射器建立一个BGP连接会话,并通过BGP路由反射器向同一VPLS域的其它PE通知有关新的PE的参数。这样,其它PE就可以“发现”这一新的PE并主动与其建立LSP连接。在基于LDP协议的信令机制中并没有定义有关自动发现的功能,但是,通过在网络中增加一个目录服务器则也可以实现类似的功能。目录服务器中为每一个VPLS域维护了相关的配置信息。当新的PE加入网络中,将引起目录服务器上记录的更新,这一更新的结果被发布到其它所有的PE上,从而使得这些PE“发现”新的PE。 

2.城域光传送网 

一般来说,城域光传送网被定义为覆盖100km左右,特别是服务于大中型城市和地区的光网络。城域光传送网是骨干光传送网和接入网的桥接区,主要完成接入网中的企业和个人用户与骨干网运营商之间全方位的业务互联互通。骨干网与城域光传送网相连,并在区域之间相互延伸以实现互联互通,骨干网的发展重点是网络容量和长距离传输。接入网将业务直接提供给终端用户,其特点是有多种多样的应用和灵活的结构。处在骨干网和接入网之间的城域光传送网是整个网络体系中的一个重要组成部分,不仅要承载多种网络协议和信道速率,还要具有组网的灵活性和可扩展能力。 

由于城域网位于骨干网与接入网的交汇处,是通信网中最复杂的应用环境,各种业务和各种协议都在此汇聚、分流和进出骨干网。多种交换技术和业务网络并存的局面是城域网建设所面对的最主要问题。 

城域网不仅要求低成本,在支持的客户业务种类上也与长途网不同,系统还要提供丰富的OTU接口,支持多协议多业务接入,承载多种业务格式:PDH、SDH、POS、IP、ATM、FE、GE、10GE、ESCON/FICON/FC、数字视频、多速率自适应等。 

总体来说,宽带城域网的建设应包括城域光传送网、宽带数据骨干网、宽带接入网和宽带城域网业务平台等几个层面。新一代的宽带城域网应以多业务的光传送网为开放的基础平台,在其上通过路由器、交换机等设备构建数据网络骨干层,通过各类网关、接入设备实现语音、数据、图像、多媒体、IP业务接入和各种增值业务及智能业务,并与各运营商的长途骨干网互通,形成本地市综合业务网络,承担城域范围内集团用户、商用大楼、智能小区的业务接入和电路出租业务,具有覆盖面广、投资量大、接入技术多样化、接入方式灵活,强调业务功能和服务质量等特点。 

目前构建宽带城域光传送网采用的3种技术主要是:城域WDM环网、以SDH为基础的多业务传送平台(MSTP)以及弹性分组环(RPR),它们各有自己的特点和适用范围。 

波分复用技术继在骨干网及长途网络中应用后,也开始在城域网应用,特别是其巨大的容量、网络的扩展性及业务的可扩充性,在城域网中显示出特有的优势。但是WDM技术的高成本是城域网环境无法接受的;另外针对城域网客户层业务的多样性及复杂性,城域波分复用技术必须向高效承载多业务方向演进。解决这些矛盾之后,CWDM(粗波分)和OADM环网技术将逐渐成为该技术的主导力量。   

2.1CWDM城域传输技术   

CWDM技术一般应用于小型城域网或大型城域网的汇聚、接入层,它的波长数目一般为4波或8波,最多16波,波长从1290nm~1610nm(16波系统)。下面是目前CWDM的波长分布情况:O波段为:1290nm、1310nm、1330nm、1350nm;E波段为:1380nm、1400nm、1420nm、1440nm;S+C+L波段共有8个波长:从1470nm到1610nm,波长间隔为20nm。这些波长覆盖了整个光纤的可用波段,包括过去常用的波长1310nm、1510nm、1550nm。   

由于波长间隔较宽,CWDM系统可以使用非制冷的DFB激光器和带宽滤波器,这样既延续了DWDM技术的优势,又具备了DWDM技术所不具备的一些特点:低成本、低功耗、小尺寸等。它的出现解决了长久困扰城域网建设的性价比问题,而且它最大限度地利用了现有城域光纤基础设施,进而满足了未来小型城域网及大型城域网汇接、接入层业务所需要的带宽。   

当然,CWDM技术也有其不足之处,比如要建设一个16波的CWDM系统,其带宽范围覆盖了近400nm的光纤工作窗口,其中包括1380nm的高衰减区,普通的光纤介质根本无法适应,需敷设全波光纤才能满足要求。 

2.2城域OADM传输技术 

城域OADM环网技术是在考虑客户信号的可靠性基础上发展起来的。利用该技术,可以实现灵活的波长保护和调度。当前,固定波长的OADM在实际工程中已经被采用,波长可调、动态重构的OADM产品也即将走向商用。  OADM系统主要由合波器、分波器、上路波长转换器(OTU-A)、下路波长转换器(OTU-D)、光功率放大器、光前置放大器、子速率复用/解复用器(可选)等单元组成,为开放式WDM系统。其中光功放和前放是可选件,子速率复用/解复用器的应用只要是为了解决网中小颗粒客户信号的承载而设计的。   

由于上下波上的数目及要求不同,OADM又分为串行、并行、串并结合三种类型。   串行结构在节点上只对需要上下路的波长进行处理,对通过波长不做光层的复用(MUX)和解复用(DEMUX)处理;并行结构对上下路波长、通过波长都进行复用和解复用处理;串并行混合结构先通过子波带滤波器将在本节点上下路的1个或多个子波带进行滤波,然后对子波带内的每个波长进行复用和解复用处理,而其它子波带在经过子波带滤波/合波器的处理后直通。 

3.城域传输网存在的问题 

目前,在城域网中,话音和专线业务通常由SDH和电路交换机提供,数据业务通常由SDH和分离的FR、ATM、IP网提供,这种通过传输网独立组网的重叠网络结构是多年来为不断支持新业务而逐步形成的。该结构有利于各业务网单独规划和运营管理,但随着不同种业务的数量和流量增加,出现网络资源利用率低、统一规划和管理困难、各业务网间互通复杂、网络发展不适应业务多样化需求等问题,使重叠网络结构越来越难以满足市场发展变化的需要,建设和运营成本越来越高,投入和产出不能保持同步增长。 

在承载IP数据方面,现有本地传输网存在不足,IP城域网基本上为独立组网,绝大部分业务直接承载在物理光纤网络上。这种组网方式的好处是节省传输设备投资,使组网成本大大降低,但采用量裸纤互连IP设备,加快了光缆线路资源的消耗,而且裸纤直连无法实现链路保护,不便于业务管理和提供电信级业务。 

城域范围内各业务网独立发展,给城域传输网的规划和发展带来了很多问题,特别是在IP业务高速增长和客户需求多样化的环境中,各业务网单独组网复杂低效,造成传输网资源严重浪费、设备和运营成本高以及业务提供缓慢等问题,主要体现在以下方面: 

①传输链路资源利用率低,大量通道富余闲置,网络资源总体过剩、局部不足的矛盾突出; 

②城域传网业务接口类型少,承载业务类型有限,不能提供多等级业务,不适应IP网络突发业务的特性; 

③由地城域传输网的限制,IP城域网独立组网,光纤消耗大,缺乏有效保护和恢复能力,不能提供有质量保证的IP业务承载; 

④大量SDH环网叠加互连,业务开通时间长、不灵活; 

⑤难以灵活有效地开展VPN、带宽出租和带宽实时请求等新业务; 

⑥多厂家设备组网,网管不健全,无统一网管,业务调度困难,运维成本高。【未完待续】

时间:  2004-11-30 15:09
作者: shujuren     标题: 城域网的建设与应用(四)

城域网的建设与应用(四)
编者按:上一篇文章《城域网的建设与应用(三)》我们介绍城域以太网技术、城域光传送网、城域传输网存在的问题。 本篇我们将介绍以下内容: 

目录 

城域传输网络
光纤的选型考虑
城域光缆线路的阻断问题 

1. 城域传输网络 

1.1核心层 

核心层由核心节点组成,一般有交换局、长途局、数据中心及关口局等,负责核心节点间大容量中继电路,与省/本地长途网的互联互通,与其它网络的互联互通。网络结构相对稳定,业务可靠性、安全性要求高。网络节点数量少、业务容量大、电路调度频繁。核心层可采用的组网技术主要有城域波分、MSTP和OXC等。 

若业务量不是特别大,新建的城域传输网核心层可选用MSTP技术组网。城域核心层业务收敛程度高,核心设备节点相对较少,可通过10G设备或40G设备实现大颗粒业务传送。由于SDH设备经历了较长的发展和应用过程,基于SDH的MSTP系统成本相对较低,同时可提供成熟的网络保护和较大的网络带宽,承载高速IP、POS端口和传统SDH端口,并可同时提供SDH链路业务,实现交换局、关口局与汇接局的互连互通。网络初期建设采用MSTP技术,可为城域传输网核心层提供低成本综合业务解决方案。 

城域网核心层无需传送网具备L2的交换和处理功能,而只要提供点到点的高速连接(POS或GE/10GE接口),因此核心层的MSTP只需要提供数据透传功能。在城域传输网与IP网的关系上,由于当前城域传输网在承载IP数据时存在效率、灵活性和成本等问题仍未得到解决,对于业务量不是特别大的城域核心层,IP网和城域传输网可采用分别组网的方式,IP网节点独立于传输网节点。分别组网有利于发挥各自的技术优势,便于实现两网核心层的强大业务处理能力。 

对于业务量特别大的区域,尤其是未来业务流量将保持较高增长速度的地方,核心层应采用城域波分技术。采用城域波分技术可以把当前单独组网的IP宽带风和城域传输网的核心层统一到城域波分物理平台上,由此平台提供的波长资源分别承载SDH、MSTP和IP宽带业务。这样不仅有利于网络统一管理,而且可通过灵活调拨波长资源,快速满足IP网迅速增长的带宽要求,解决光纤直连方式中光纤资源快速消耗的问题,提高网络资源的利用率。另外,城域波分提供带保护的波长通道,可用于传送比光纤直连具有更好QoS保障的数据业务,以增强IP网的生存性和健壮性。更重要的是,城域波分技术的应用为今后向智能光网络发展提供平滑演进的物理平台,可避免分离组网所造成的网络融合困难和难以扩展等问题,为引入智能OXC、适应未来智能提供多样化业务和灵活分配带宽奠定基础。 

核心层网络拓扑结构的今后目标是向网状网或格状网的方向发展,采用分布式的控制机制,应用OXC组网技术,并基于ASON和GMPLS等新标准和技术。基于OXC的智能光网络是今后传送网发展的重要方向,但当前技术尚未成熟,业务需求也有待开拓。 

1.2汇聚层 

汇聚层由汇聚节点组成,负责一定区域内业务汇聚和疏导,要求具有强大的业务调度能力。汇聚层的存在避免了接入点直接入核心层,导致的接入网跨度大、主干光纤消耗严重等问题。汇聚层可采用的组网技术主要有MSTP、RPR和城域波分技术。在汇聚层采用MSTP,可保证对传统TDM业务的支持,同时优化数据业务的传送,提高带宽利用率。利用MSTP的L2交换和汇聚功能,可节省汇聚层节点的业务端口,降低网络成本。当前和今后一段时期,TDM业务仍将是电信运营商最主要的收入来源,而且还有一定的增长空间,在业务需求以TDM业务为主时,新建城域传输网的汇聚层以采用MSTP为适。 

若已建的SDH网络还有较多的剩余容量,能满足今后TDM业务发展的需求,而新增的业务主要以IP数据业务为主时,则可以考虑采用RPR技术组网。RPR具有优化的数据业务传送能力,它能提供多种级别的业务种类,可满足用户多样化业务需求。 

当城域全范围或局部区域业务量很大且光纤短缺时,可在汇聚层局部区域采用城域波分技术,基于经济性考虑,应以采用CWDM技术为主。由于汇聚业务颗粒较小,可通过T-MUX接口,把低速业务汇聚到一个波长,以提高波长利用率。在当前情况下,汇聚层业务量相对较小,通常无需彩城域波分技术即可满足带宽需求。对于城域传输网与IP网的组网,倾向于采用汇聚层IP城域网和城域传输网分别组网的方式,IP网节点独立于传输网节点。将来技术成熟后,汇聚层也会向统一传送平台发展。 

1.3接入层 

接入层处在网络末端,进行业务的接入。接入层是技术最丰富、对成本最敏感的区域,当前接入层可供选择的技术主要有MSTP、RPR和EPON等。接入层采用MSTP可以替代部分数据网络设备,降低网络成本。对于IP业务流量占主导的区域,可采用RPR组网,以实现数据业务接入能力优化。由于接入层中的主要业务包括10M/100M以太网、2M、34M/45M等小颗粒业务,城域波分技术不适用于这一层面。 

对于城域传输网与IP网的组网,应综合考虑技术成熟性和网络经济性,根据实际需求,可采用多种不同的技术方案实现经济和灵活的业务接入。在接入层,城域传输网应能提供丰富的业务接口,以最大限度满足IP业务的接入和承载,有利于节省网络投资和提高资源利用率。局部区域(如传输资源紧缺或用户IP业务需求量大)仍可采用光纤直连方式。具体采用何种技术,应根据业务需求和不同业务量比例情况,通过技术和经济分析来确定。 

2.光纤的选型考虑 

使用新一代低色散斜率的G.655光纤。在城域网接入层上,通路非常密集,主要针对基于2.5Gbit/s及其以下速率的系统,G.652光纤承载的系统在技术上有较好的优势,所以G.652光纤是一种选择;在汇聚层(大、中城市),对于基于10Gbit/s及更高速率的系统,G.652和G.655光纤均能支持;对于城域网中的骨干层,可选用G.655光纤中的新型光纤,如无水峰光纤G652C、大有效面积光纤、低色散斜率光纤等,而新一代的无水峰光纤因扩大了可用光谱,显示出很独特的优势,必然会得到广泛的应用。 

在已有网络中选择光纤时,有很多因素需要考虑,其中关键的两个是衰减和色散。这两个因素决定了光纤的选择,最终也影响了网络建设的费用。城域网的主流光纤是标准单模光纤(SMF),其在1310nm区有最小的色散,在1550nm区具有最小的衰减。SMF在O、S、C、L波段具有可用性,但是在1383nm区的衰减峰即水峰使其在E波段运用不理想。为了打开光传输的E波段,一种增强单模光纤(E-SMF)出现了,其在没有影响光纤的色散特性的前提下显著地降低了1383nm区水峰的衰减。因此E-SMF在1260nm到1625nm区,所有的波段都具有可用性。更宽的波长区使E-SMF在DWDM应用中更合适。 

随着将来波长透明光网络在城域网环中的应用,系统将工作在超过信号再生中继距离的范围。由于SMF和E-SMF的色散系数较高,10Gb/s系统的色散距离限制在70km左右,较长的环网将需要色散补偿模块(DCM),这种色散补偿模块实际上是由负色散系数的光纤组成,用来减轻光纤正色散值的积累,当这种模块用于超长距离时,他们会导致系统价格的上升和具有较大的衰减。一个DCM模块的价格与其所补偿的光纤价格几乎相同,而其导致的衰减将需要在环中增加额外的放大器。这样色散的限制使SMF适用于70km以下。 

非零色散位移光纤(NZ-DSF)对于超过70km的应用是一个较好的选择,NZ-DSF其零色散点位置相对于SMF来说在较长的波长点。NZ-DSF在1550nm区其衰减和色散是适合于高性能的传输的。NZ-DSF最初是为长距离优化设计的,新一代的NZ-DSF将在城域网中具有理想的工作性能。 

城域的NZ-DSF提供了从1440nm到1625nm,包括C、S、L波段的DWDM可用性,由于城域NZ-DSF的色散系数小于SMF的一半,所以其可能提供两倍于SMF的色散受限距离。在未来的系统中NZ-DSF光纤的工作距离将可以达到200km而不需要额外的色散补偿,当然也不需要色散补偿光纤(DCF)和光放大器。 

尽管具有正负色散系数的NZ-DSF都可以让10Gb/s系统在C波段的工作距离大于200km,但是推荐使用具有正色散系数的光纤,原因是多方面的。首先,正色散系数光纤能提供更远的工作距离,且具有兼容40Gb/s系统的潜力,并且兼容已有的系统和接入应用。另外,10Gb/s和40Gb/s系统需要光纤能被标准的色散模块补偿,而当前标准的DCM是负色散系数的光纤,他们不能补偿负色散系数的NZ-DSF。 

虽然,具有较高正色散系数的SMF可用于补偿负色散系数的NZ-DSF,但1km的SMF仅能补偿2km的负色散系数的NZ-DSF因此需要大量的SMF,这必将显著增加网络的衰减使补偿显得不现实。同时由于色散斜率的不一致,这种补偿将会导致系统不同波长区的色散积累差异较大。在将来的40Gb/s系统中色散限制要求更严,所有的光纤色散积累必须得到补偿,考虑到40Gb/s系统具有较高的色散补偿要求,为了与其他系统的兼容,因此建议城域网环境使用具有正色散系数的光纤。 

负色散系数NZ-DSF的零色散点在1620nm以上。它在L波段具有较低的色散系数,而在1310nm具有较高的色散系数,其L波段的低色散将增加通道间的非线性串扰,这一特性限制了DWDM系统在这一区域的运用。而1310nm的高色散系数也限制了它的可用性。 

因为正色散系数城域NZ-DSF零色散点大致在1400nm。它在1310nm具有相对低的色散系数,其色散系数只相当于负色散NZ-DSF的1/4,典型值为-6ps/nm.km。相比较而言,E-SMF或者SMF在1310nm区具有零色散点,将具有单信道最长的色散受限距离。 

3.城域光缆线路的阻断问题 

由于市政建设的发展,通信线路工程维护部门配合市政建设对城域光缆线路进行改造割接是十分频繁的,再加上道路修整、改扩建以及其他开挖路面工程的增多、各种有规划、无规划、有预或无预定突发的施工都在不分黑白天昼的进行着,每时每刻都在威胁着通信管道及其管道内光缆线路的安全。为此要求通信线路工程维护人员在施工和处理故障中,一定要尽量不中断或少中断通,确保通信的安全、稳定和减少通信阻断带来的经济损失以及不良的社会影响。 

然而,目前光纤传输系统的自保能力是有限的,在光缆线路发生全阻性的故障时,如只靠光纤传输设备自身的保护系统,很难确保线路的安全和畅通。例如,具有环路自愈功能的SDH传输系统,如果光纤传输环不是真实的物理光缆环,在某处光缆线路发生的阻断,就有可能造成整个SDH传输环的中断。再如近年来兴起并被采用的光缆线路自动监测系统,虽然能够完成对光缆线路实时,自动的监测,但也不能预防和预测因外力造成的光缆突发性的阻断,不能在光缆线路发生故障时对其中的光纤传输系统起到保护作用。就是说,无论哪一条光缆发生全部阻断或部分纤芯阻断,都会对没有通过另一条物理光缆传输路由保护的光通信系统造成一定时长的通信中断。 

目前,城域中继光缆和用户主干光缆大都在24芯以上,大多数光缆中的大多数纤芯在占用中,光缆阻断时,在比较好的现场条件下,从阻断到完全修复一般需要6~10h。即使是有计划的割接,在目前的技术条件下,也得使通信中断1h~6h。这对于高速、宽带、大容量的光纤传输所造成的通信损失是严重的,尤其是对于传输系统多、中断时间长的重大光缆阻断障碍,不仅会给电信运营部门造成严重的经济损失,而且会造成严重不良的社会影响。 

为了向用户提供优质、高效、安全、畅通的通信线路,必须具有更加切实有效的保护措施来。例如,双路由的互保就是一种十分有效的保护措施。通过这种互保,不管是突发性的线路阻断或链路阻断,还是光缆线路的割接,都不会出现明显的通信中断或用户能感觉得到的通信中断的情况。 

近年来兴起的光缆线路自动监测系统虽然能完成对光缆的实时自动监测,但不能预防预测外力作用造成的光缆突发阻断障碍, 也不能在光缆线路发生故障时使其中的光传输系统得到保护。一条光缆发生全阻断或其中部分纤芯阻断,对于那些没有通过另一条物理光缆传输路由保护的光系统会造成较长时间的业务传输中断。   

另外, 配合市政建设城域光缆线路的迁改割接亦是很频繁的,为向用户提供优质、高效、安全、畅通的通信服务,要求光缆线路的割接尽量不中断通信电路,即使是非中断不可,也要把中断时间压缩到最小,以确保通信网的安全、稳固,减少因通信阻断带来的经济损失和社会不良影响。现在,对于运行中的光缆线路,割接强制在0~6点进行。对于一般用户,在事先做好通知让用户有所准备的情况下,不会有什么影响。对于某些重要而又特殊的大用户,例如外商和外资企业,由于与其本国有时差或日差,即使是在0~6点进行割接也有可能使其通信受到影响。 如果光传输系统都能有可靠的物理光缆双路由互相保护, 不管是突发的光缆线路阻断或光纤链路阻断还是光缆割接,都能保证通信不明显地中断(用户感觉不到有通信中断发生)或者能保证是瞬间中断,最起码也能保证是短时间中断,而不致造成严重的不良影响。 以下就城域光缆线路建设和运行维护方面的情况讨论几种光缆传输物理双路由保护方式。【未完待续】

时间:  2004-11-30 15:10
作者: shujuren     标题: 城域网的建设与应用(五)

城域网的建设与应用(五)
编者按:上一篇文章《城域网的建设与应用(四)》我们介绍城域传输网络、光纤的选型考虑、城域光缆线路的阻断问题。 本篇我们将介绍以下内容: 

目录 

中心城市城域网建设
区域城市城域网建设 

1.中心城市城域网建设 

1.1VLAN技术的应用 

虚拟局域网(VLAN)是从传统的局域网(LAN)概念上引申出来的,两者在功能和操作上基本相同。不同的是VLAN依据协议、MAC地址或端口在逻辑上将网络划分为若干部分。换言之,VLAN模拟了一组终端设备,即使它们处于不同的物理网段上,也不受物理位置的限制。VLAN的作用是使得同一VLAN中的成员之间能够通信,而不同VLAN用户之间是相互隔离的,如果需要通信必须通过路由设备。VLAN使网络管理简单化,可以减少工作站移动和变化所需的费用,方便地进行逻辑分组,添加、删除和修改用户信息以及通过网络流量测试工具进行计费等工作。此外VLAN可以将广播风暴遏制在本VLAN的范围之内,其他VLAN用户不受影响,大大节约了网络带宽,提高了带宽利用率。 

VLAN,即虚拟局域网,它的技术实质是通过在以太网帧头中加入802.1Q VLAN ID标记来区分不同的局域网来实现,在中心城市城域网中,它不但起到隔离广播,保障网络安全的作用,而且在业务发展方面也有一定的应用。 

虚拟局域网产生的基础是交换局域网的发展。目前,VLAN标准有Inter-Switch Link、ATM LAN Nemulation和IEEE802.10等几种协议可以采用。其中较常用的是1995年制定的IEEE802.10。目前许多基于二层交换的交换机都支持VLAN技术,并可以识别不同的VLAN用户。 

1.1.1虚拟拨号VLAN。该种方式要求用户端至宽带接入服务器为全二层网络,因此VLAN应从接入层交换机用户端口经过汇接层交换机划至BRAS,为了限制广播以及保障用户安全性,一般每端口分配一个 VLAN ID。 

1.1.2设备互连。基于中心城域网的设备情况,在接入与汇接之间的一个链路上既要完成三层路由功能,又要完成二层PPPOE流量,因此二,三层混跑是一个现实情况。基于对设备的研究,最后在城域网上采取了设备互联也分配一个VLAN,为这个VLAN分配一个三层接口,来达到三层互连的功能。 

1.1.3VPN。中心城市城域网中有用户VPN的业务,会存在这样一种需求,即在不同汇接区的用户需通过城域网组建虚拟专网。一个方法是,将用户的VLAN从一端经汇接层、核心层划至另一端,也就是使VLAN在整个城域网中互通,这样比较简单,但是不利于网络维护,影响核心层交换机功能,同时还浪费了宝贵的VLAN ID,使整个城域网的可利用VLAN数目将大大减少。另外一种方法是使用透明VLAN技术。其基本原理是:在核心层的路由交换机之上运行SUPER VLAN功能,将一个汇接区的VLAN通过核心层设备的另一个VLAN透明传输到另一个汇接区,核心层 VLAN终结于核心层设备,只在核心层有效。它的原理是在原来已经打上VLAN 标记的以太帧上再打上第二个VLAN标记。这种方案比第一种方案的优点是可以有效利用宝贵的VLAN ID资源,网络维护简单,亦不影响核心层交换机的功能。 

1.1.4节省IP地址。IPv4的地址数量有限,已经不能适应互联网的发展是一个不争的事实。可以有效解决地址数量问题的IPv6离现实的应用也还有一段距离。因此,如何节省宝贵的地址资源,是运营商面临的很大问题。如果城域网的设备可以实现业界流行的聚集VLAN(RFC3069)的功能,将会有效节省IP地址。传统做法是为每一个需要三层功能的VLAN配置一个三层接口,分配一段IP地址供用户使用。但是这样为用户分配的地址利用率不高,原因是这段地址的首尾两个地址不能为用户主机使用。这样,如果按用户申请4个计算,利用率将是50%,申请8个,利用率是75%。如果使用聚集VLAN,那么,多个VLAN 可以配置一个三层接口和一段地址,大大提高了地址的利用率,而防止地址盗用的问题可以由厂家设备来具体实现。目前,中心城市城域网还没有实现该功能,但是相信在不远的将来,在厂家与运营商的共同努力下,将会很好实现该功能。 

1.2 VLAN的规划 

中心城市城域网VLAN规划总的方案是:以每个汇接区为单位终结VLAN,这样,每个汇接区可以有4096个VLAN资源,整个网络将有6×4096=24576个VLAN ID资源。为了适应跨汇接区的VPN互联,在核心设备上规划4096个VLAN做为SUPER VLAN。在为每个汇接区的VLAN做规划时,主要分为:光纤虚拟拨号VLAN、光纤专线VLAN、设备互联VLAN、ADSL虚拟拨号VLAN、 ADSL专线VLAN以及备用VLAN等。 

VLAN划分可以分为端口VLAN、动态 VLAN、Super VLAN等几种划分方式,这几种划分方式各有特点。可根据实际情况选择不同的VLAN划分方式。 

1.2.1端口VLAN划分。基于端口的VLAN划分方式是较常用的一种划分方法,目前许多厂商的交换产品均支持这一功能。其原理是按照用户交换机端口来定义VLAN用户,即VLAN从逻辑上把局域网交换机的端口划分开来,然后根据用户需要的IP地址在VLAN中划分子网(子网是将Internet地址中的主机地址空间进行细分,可有效提高网络可靠性、灵活性、适应性和地址资源利用率)。端口VLAN划分分为单交换机端口VLAN划分和多交换机端口VLAN分两种方式,前者只支持在一台交换机上指定若干的端口组成VLAN,而多交换机端口VLAN划分则可以使一个VLAN跨越多个交换机,并且同一个交换机上的端口可以属于不同的VLAN。端口VLAN划分能够较好地进行用户管理,减少广播风暴,并且安全性也较高。但IP地址利用率不高,原因是一个完整的子网由网段地址、网关地址、用户地址和广播地址组成。这样,只包含一个用户的VLAN就由4个IP地址组成,而真正被用户使用的IP地址只有一个(用户地址)。我们知道,IP地址是一种有限的资源,这样的划分方法将带来IP地址的浪费,因此端口VLAN方式的地址使用率较低。 

1.2.2动态VLAN划分。动态VLAN划分的原理是在用户交换机的内存中制定一张用户信息表,用来记录用户的IP地址、VLAN号(VLAN ID)以及端口信息等。当用户数据信息进行交换时,交换机根据信息表进行检查,通过认证的数据分组进一步进行寻址和路由选择,反之则将其丢弃。动态VLAN划分的保密性较之端口VLAN划分更高,因为交换机不仅要检查用户的IP地址还要复核其VLAN ID。 

1.2.3 Super VLAN划分法。Super VLAN划分法是目前最先进的一种VLAN划分方法,Super VLAN又称为VLAN聚合(VLAN Aggregation ),是一种专门设计的优化IP地址的管理技术。其原理是每个子网(sub-VLAN)都是独立的多播通道,多播信息不能在不同的子网中进行交换。当数据需要送到多个目的节点时,就动态建立VLAN代理,通过代理设备对VLAN中的用户进行管理。这样每个子网不需要设定ip地址,而是一个Super VLAN中的所有子网共享一个IP地址,这个IP地址就是Super VLAN的IP地址。 

前两种划分VLAN的方法,对于每个用户VLAN都需要分配一个IP子网地址,因此需要大量的IP地址资源,而采用Super VLAN技术后,可以极大程度地节约IP地址。只要对包含多个VLAN的Super VLAN分配一个IP地址,既节约地址又便于网络管理。 

另外,还有MAC VLAN以及三层VLAN等划分方式,MAC VLAN通过设备的MAC地址(硬件地址),由人工进行初始配置来完成VLAN分类,实际使用中比较复杂。三层VLAN是由协议类型或网络层地址来定义VLAN,例如通过TCP/IP的子网地址来划分VLAN用户,由于技术实现比较复杂,目前还未大规模使用。 

VLAN技术的使用为解决网络配置和管理提供了良好的方法,随着局域网和用户数量的不断增加,VLAN技术将得到更加广泛的使用,目前Super VLAN技术还处于初级阶段,但有理由相信其有着巨大的发展空间,VLAN技术必将发挥更大的作用。 

2.区域城市城域网建设 

区域城市的宽带业务经过多年的培育,现已进入高速增长期。这一切主要得益于网络运营商完善的市场跟踪体系、成功的营销策略和运营模式。由于宽带业务具有与传统电信业务不同的业务模式和价值链,仅拥有骨干网、宽带城域网与驻地网的建设方面的优势并不足以保证在宽带业务上获得成功。在宽带产业链各个节点寻求突破的情况下,区域城市建网要充分利用现有资源,加快与设备提供商合作,发展与内容服务商的良好关系,将用户的需求放在第一位,为用户提供各种有价值的内容与服务,并与之营造宽带价值链的“共赢”局面。 

2.1从ATM过渡到IP城域网 

区域城市一般同时拥有ATM和IP两套骨干网络系统,但目前的ATM网络资源很大程度上为普通ADSL接入用户所占用,并没有很好地发挥ATM应有的优势,而且现有ATM经过多年运营,其网络容量和端口数量等已渐渐不能满足数据业务发展的要求。考虑到IP已成为城域网的主流,区域城市后期将不会大力扩容ATM网络,新增宽带用户将直接通过IP城域网接入。原有ADSL用户也尽量在本地完成ATMPVC(永久虚连接)的终结,以减轻ATM骨干网的压力,为其它需要严格QoS保证的宽带专线等业务提供更多的ATM资源。 

在IP城域网方面,区域城市要充分利用已经建成比较完善的核心路由器和高性能路由交换机组成IP的骨干城域网,宽带接入网是下一步网络建设的重点。此阶段需要重点考虑的是投资回报率、方便灵活的用户管理和网络管理、可扩展性和增值业务提供的能力等实际问题。通过充分论证和比较,区域城市应采用了智能宽带接入网解决方案。汇聚层采用宽带接入服务器(BAS ) 作为用户管理和智能业务提供平台,对于现有网络,如果采用大容量BAS集中放置,则需要在现有IP骨干网的路由交换机之间启用基于802.1Q的VLAN通道,这容易造成广播风波,不利于网络的稳定运行,因此实际建设中选用多台中小容量的宽带接入服务器ZXE10-UAS1500和ZXE10-UAS2500分布式组网,实现各县市用户的本地BAS直接管理,同时结合后台的ZXE10-3AS业务管理系统,为用户提供各种智能和增值业务。 

2.2接入网首推ADSL 

单一的包月制现已很难同时满足不同用户的需要,丰富的计费和业务提供能力是本智能宽带接入网建设的重要目标之一。ZXE10-3AS采用跨平台的模块化系统结构,具备灵活的计费规则引擎和丰富的计费策略定制功能,如一次划价时间计费(秒、六秒、分钟、小时)、一次划价流量计费(千字节、兆字节)、二次划价日期段优惠、二次划价时间段优惠、二次划价星期段优惠、三次划价金额数目优惠等;支持客户组概念,每个客户组可以具有不同的权限和计费方式,便于开展带宽批发等各种增值业务。同时提供强大的Portal(门户)功能,可以实现用户的在线动态速率调整、在线业务选择和区分业务的计费,具备完善的业务扩展能力和开放的系统接口。 

在具体接入手段选择的过程中,ADSL以其技术成熟、无需线路投资、即开即通、开通率高、线路维护成本低等诸多优势在与FTTB+LAN方式的竞争中脱颖而出,成为区域城市的首选。考虑到后期扩容和管理的方便,智能宽带接入网建设中的接入设备应采用大容量的ZXDSL8210 , ZXDSL8210支持E1/ATM/GE/FE等各种接口,可以实现多级星形或链形级联。但考虑到实际情况,对用户较少且缺少光纤资源的部分乡镇和边缘节点,则采用小容量的 ZXDSL8426 ,ZXDSL8426同时支持FE和E1接口,可充分利用现有的传输资源,通过多个E1接口捆绑,实现与端局机房的大容量 ZXDSL8210级联。普通用户采用PPPOE宽带拨号方式上网,集团用户或网吧等其他大客户则可以根据实际需要,采用用户名与PVC或VLAN ID绑定的方式实现专线用户的认证和计费。 

2.3 发展小区VLAN无线接入 

对于无线接入网络,人们最关心的问题恐怕就是如何将无线用户接入适当的有线VLAN。有线网络中的VLAN用户身份通常都是由用户的物理层二层交换机或三层路由器连接端口来定义的。但在无线网络中,用户根本没有与任何物理端口连接。利用基于角色的VLAN关联来进行用户识别。这种方法可以利用一系列标准的验证方法,如基于HTTP捕获端口和802.1x等可选验证机制来判断出正确的VLAN用户身份。 然而,802.1x基于端口的验证方法则可以提供一个有效的框架,为以太网和无线网络上的用户提供基站访问授权。802.1x使用可扩展验证协议(EAP)来中继局域网基站(请求者)、以太网交换机或无线接入点(验证者)与RADIUS服务器(验证服务器)之间的端口访问请求。 

用于保护Wi-Fi网络用户的核心机制是基于数据加密和用户验证的方法,而非通常使用的基于角色的验证方法。基于角色的802.1x VLAN关联具有很大的吸引力,因为它可以提供合理的工作组流量分割,并且更容易与有线网络上配置的安全和流量工程策略集成在一起。 

网络管理员通常都希望为所有用户保留原有的扩展服务集ID(ESSID)和加密档案。这样,当用户进入无线局域网时,系统可根据验证服务器上已经配置好的属性,将用户分配至不同VLAN内的不同工作组中。如果不使用基于角色的VLAN,这种方法基本上是不可能实现的,除非对无线局域网的许许多多配置逐个调整,为每个用户组引入新的ESSID。这种做法无疑需要巨大的资金投入和高昂的运营费用。 

无线局域网交换机可以支持各种类型的用户角色,以及不同的访问权限和VLAN关联。它还可以支持多种类型的服务器规则,并从中引申出用户角色,如RADIUS服务器发出的访问接受信息中的RADIUS属性。例如,某一条服务器规则用于提取某个特定RADIUS属性中的数值,并使用该数值作为角色。在802.1x验证中,客户机通过一个无线局域网交换机验证至RADIUS服务器。然后,无线局域网根据执行服务器规则后产生的角色,在VLAN与客户机之间建立关联。 

一旦与接入点之间的关联建立完成,无线局域网交换机将客户机置于未授权状态下。在这种状态下,只有客户机生成的802.1x EAP包才能通过无线局域网转发。无线局域网交换机发送一条EAP Request-ID,即用户身份请求信息给客户机。客户机则回应一条EAP Response-ID信息。此后,无线局域网交换机将EAP Response-ID封包为一条RADIUS访问请求信息,并将其转发给RADIUS服务器。 

如果验证成功,RADIUS服务器将访问接受信息发送给无线局域网交换机。这条信息可以识别不同的用户属性,如角色和访问权限。然后,无线局域网交换机会对这条回应信息进行解析,并确定客户机应当被分配至哪一个VLAN。 

使用该信息,无线局域网交换机便将客户机分置于授权状态下,并发送一条EAP Success信息。此后,交换机才将来自客户机的所有数据流量转发给合适的VLAN。在收到EAP Success信息后,客户机将启动动态主机配置协议,并从基于角色的VLAN上获得一个IP地址。【完】

时间:  2004-11-30 15:11
作者: shujuren     标题: 全文下载

可以下载全文
[点击浏览该文件]

时间:  2004-12-8 13:35
作者: andy_sun79

不错




通信人家园 (https://www.txrjy.com/) Powered by C114