通信人家园

标题: 求助:有没有传输方面的论文啊?  [查看完整版帖子] [打印本页]

时间:  2009-8-17 11:16
作者: 通信小小小兵     标题: 求助:有没有传输方面的论文啊?

谁有传输方面的论文啊?能否帮忙传一个啊,小弟要应付考级啊~~
5610wjk@163.com   帮忙哇
时间:  2009-8-17 11:20
作者: 通信小小小兵

有谁有帮忙上传下啊~~~
时间:  2009-8-18 14:15
作者: 通信小小小兵

继续顶~
时间:  2009-8-19 10:22
作者: tomtuo     标题: 浅谈WDM光传送网中的关键技术

  论文关键词:IP业务;网络容量;WDM 传输

  论文摘要:随着IP业务不断增加,对网络容量要求越来越高。WDM技术利用光纤的巨大带宽,满足网络容量要求,并降低传输数字信号的代价。这使WDM网络成为现代通信技术中的关键技术。   
  
  一、WDM光传送网概述
  
  伴随着Internet业务的飞速增长,宽带高速率和多业务己经成为通信网络的发展目标,但现有的通信传输技术和交换技术却越来越不能满足这种要求。于是利用光纤近30THz的巨大带宽容量来传输信息就自然成为当今通信发展的潮流。光纤波分复用技术(Wavelength Devision Multiplexing )的发展,为光纤通信提供了广阔的天地。

  (一)波分复用技术的概念

  波分复用技术,是在一根光纤中同时传输多个波长光信号的一项技术。其基本原理是在发送端将不同的波长信号复用起来,并藕合到光缆线路上的同一根光纤中进行传输,在接收端又将复用起来的光信号分开(解复用),并做进一步处理后恢复出原信号以送入不同的终端。由于每个光源是以不同波长工作的,因此当其后在接收端转换成电信号时,可以完整地保持来自每个光源的独立信息。WDM技术使光纤的传输容量得以极大提高,为高速大容量的宽带综合业务网的传输提供了有效的途径。

  (二)WDM技术的主要特点

  能利用光纤的巨大带宽。WDM技术充分利用了光纤的巨大带宽资源,使一根光纤的传输容量比单波长传输增加了几倍至几十倍。从而增加了光纤的传输容量,降低了成本,在很大程度上解决了带宽紧张的问题,基本能满足未来高速宽带通信网的要求。

  能同时传输多种不同类型的信号。WDM技术中使用的各波长相互独立,因而可以将传输特性完全不同的信号(如数字信号、以及PDH信号和SDH信号等)混合在一起进行传输,同时也是引入宽带新业务的方便手段—通过增加一个附加波长即可引入任意想要的新业务或新容量,如目前将要实现的IP over WDM技术。

  单根光纤可进行双向传输。由于许多通信都是采用全双工的方式,因此WDM技术采用单纤进行双向传输可以节约大量的线路投资。另外,对已建成的光纤通信系统扩容很方便,只要原系统的功率冗余度较大,就可以进一步增容而不必对原系统做大的改动。
  
  二、WDM光网络的组网技术
  
  (一)WDM光网络的分层体系

  现代电信网已变得越来越复杂,为了便于分析和规划,ITU-T提出了网络分层和分割的概念,即任意一个网络总可以从垂直方向分解为若干独立的网络层(即层网络),相邻层网络之间具有客户/服务者关系。每一层网络在水平方向又可以按照该层内部结构分割为若干部分,因而网络分层和分割满足正交关系。采用网络分层模型后有下述主要优点:

  单独地设计和运行每一层网络要比将整个网络作为单个实体来设计和运行简单方便得多。可以利用类似的一组功能来描述每一层网络,从而简化了TM1V管理目标的规定。从网络结构的观点来看,对某一层网络的增加或修改不会影响其他层网络,便于某一层独立地引进新技术和新拓扑。采用这种简单的建模方式便于容纳多种技术,使网络规范与具体实施方法无关,使规范能保持相对稳定性。

  这种功能分层模型摒弃了传统的面向传输硬件的网络概念,十分用于以业务为基础的现代网络概念,使传送网成为一个独立于业务和应用的动态灵活、高度可靠和低成本的基础网,而在此基础平台之上再组建各种各样的业务网,适应各式各样的业务和应用的需要。

  (二)WDM光网络的拓扑结构

  光网络互联的拓扑特性是决定网络性能最基本的性能指标,它将影响光信号质量、光谱效率、潜在的连接、网络最大吞吐量和网络生存性。任何通信网络都存在两种拓扑结构,即物理拓扑和逻辑拓扑。我们这里以物理拓扑我主要研究对象。网络的物理拓扑就是网络节点与光缆链路的集合。随着节点技术的发展,OADM和OXC设备的出现使得光网络的各种物理拓扑地实现成为可能,基本的物理拓扑主要有以下几种:

  线形。在线形拓扑中,所有的网络节点以非闭合的链路形式连接在一起,通常这种结构的端节点是波分复用的终端,中间节点是光分插复用设备。这种结构的优点是可以灵活实现上下光载波,但其生存性较差。因为节点或链路的失效将把整个系统割裂成独立的若干个部分而无法实现有效的网络通信。

  星形。星形结构又可称为枢纽结构,网络中仅有一个中心节点与其他所有节点都有物理连接,而其他的各节点之间都没有物理连接。中心节点使用具有OXC功能的网元,而其他的节点可以使用波分复用终端设备。除中心节点外,其他的从节点的通信都要经过中心节点转接,这为网络带宽的综合利用提供了有利条件,但中心节点的失效必将导致整个网络的瘫痪,另外还要求中心节点具有很强的业务处理能力。

  树形。树形拓扑是星形与线性的结合,在对它进行分析的时候,可采用分割概念将它分割成若干个星形与线形子网络的有机集合,再在子网分析的基础上进行综合。它与星形结构通常都应用于业务分配网络。

  环形。在环形拓扑中任何两个网络节点之间都有长短两条传输方向相反的路由,因而具有良好的网络保护性能,它的优点是实现简单,生存性强,可应用于多种场合。

  网孔形。在保持连通的情况下,所有的节点之间至少存在两条不同的物理连接的非环形拓扑就是网孔形拓扑。理想的网孔形拓扑中所有节点两两之间物理相连。构成网孔形网络的节点通常是OXC和OADM,它的可靠性高,但结构复杂,相关的控制和管理也相对复杂,通常应用于要求高可靠性能的骨干网中。
  
  三、WDM中的波长变换技术
  
  随着WDM网络正在逐步形成,同时对WDM网络的灵活性、可扩展性和自愈性的要求也越来越迫切。由于WDM系统中单信道的速率越来越高,信道数目越来越多,用传统的单纯基于电路的网管技术会造成整个网络复杂性的增加和成本的提高。既简单又具有一定灵活性的方法是在WDM的通道层上应用全光波长变换技术和基于波长或空分交换的方法来完成WDM网络的路由调度和OXC,这其中的关键技术之一就是全光波长变化(AOWC)。

  (一)波长变换技术的分类

  光波长变换技术分为两大类:一类是采用光—电—光的方式,即先将输入的光信号转换为电信号,由电信号去驱动另一个波长的激光器,再将电信号转换为光信号,实现波长转换;另一类为全光波长变换方式,是指不经过光一电转换,直接在光域内将某一波长的光信号转换到另外一个波长上。现在正在研究的全光波长变换技术,根据其所采用的基木物理原理可分为:交叉增益调制型、交叉相位调制型、四波混频效应和差频效应等。

  (二)波长变换技术对组网网技术的影响

  传送网的设计者常常用分层和分割技术组网,分层是指从垂直方向将网络分解为若干个独立的层网络,相临层之间是客户/服务者关系;分割是在分层的基础上,在水平方向将每一层网络分为若干个相互独立的子网络,并对每个网络进行设计和管理。全光网络本身就是一个由物理层、光层、电通道层组成的分层网络。为了充分利用波长变换技术,我们可以适时的将光层沿水平方向分割成几个互相独立的子网洛,可以大大简化网络的设计和管理。这主要是因为对于一个无波长变换器的波长通道网络来说,波长属于全局资源,网络的优化和设计必须从整个网络出发,合理分配资源。这样建立一个透明的光通道是不可能的,造成阻塞率大,对于网络的升级和扩容更不可能。而对于具有波长变换功能的节点,由于网络节点具有波长变换的功能,波长就成为局部资源。可以利用波长变换器实现子网的连接和通信,从而可对每个子网分别进行资源的配置和调度。从而简化波长分配管理、减少阻塞率、并便于排障。
  
  参考文献:
  [1] 徐荣等译,多波长光网络,北京:人民邮电出版社,2001
  [2] 张煦,2003关于光纤传输系统的报告,光通信技术,2003
  [3] 胡先志等译,光网络与波分复用,北京:人民邮电出版社,2003
  [4] 赵学军,WDM光网络技术及路由算法的研究,西安科技大学,2006
时间:  2009-8-19 10:23
作者: tomtuo     标题: 浅谈下一代光传送网ASON技术及共应用

摘要:提出当今解决光传送网所面临问题的方法,是采用既能低成本建网又能智能化完成交换连接的自动交换光网络(ASON);介绍回顾了光传送网ASON技术的产生和取得的成果,以及ASON中几种关键控制平面技术的发展情况;阐述了ASON控制平面与传统传送网的本质区别、管理平面智能化管理特点所带来的3种优点,以及传送平面中光交叉连接(OXC)的6种主要交换结构、发展方向和存在的主要问题;最后综述了新一代基于数字同步系列(SDH)提供多种业务、集成传输、交换和路由功能的多业务传送平台(MSTP)技术,并描述其新功能和远期目标。

关键词 自动交换光网络 通用多协议标签交换 控制平面 管理平面 传送平面

0 引言

  近年来,随着骨干网上IP等数据业务的爆炸性增长,波分多路复用(WDM)技术广泛应用于网络中,并提出了“IP over WDM”组网模型,这种模型省去ATM甚至SDH/SONET层面,同时只须“过度建设(overbuild)”超大容量的光传送网,就可以保证IP业务的服务质量(QoS)。然而,这种网络模型的建网方式价格昂贵,其主要原因是SDH传送分组(POS)接口和WDM系统的波长转换器(OTU)价格较昂贵,过度建设的策略会使网络成本居高不下。因此,有必要建立一种新的网络体系结构,以便更经济有效地支持未来的大容量数据业务[1]。IP数据业务也具有突发性和不确定性,这为通过对光网络带宽实行动态分配和调度、实现有效的网络优化提供了契机。一种既能大规模降低建网成本,又能提高带宽利用率的新型网络体系结构----自动交换光网络(ASON)应运而生。

1 光传送网ASON技术的发展

  2000年3月,国际电信联盟标准部(ITU-T)SGl3会议正式提出并开始规范ASON。它的诞生是为了适应光传送网在发展过程中对智能化和自动化的迫切需求,其目标是实现高效率光传送层面上的智能标准化。ITU-T的智能光网络标准称为G.ason/G.astn。目前,ITU-T的工作停留在定义和制定体系结构阶段。

  2000年7月,朗讯采用贝尔实验室的一项革命性成果----基于微电子机械系统(MEMS)技术的256×256矩阵光开关,推出全球第一个真正意义的光波长路由器(WaveStar LambdaRouter),以此为标志业界拉开ASON设备研制的序幕,但不久在全球电信市场低迷的背景下,大部分产品停止开发,ASON产品的推出进程戛然而止。然而,关于ASON的重大研究计划并没有停止。欧洲电信研究和战略研究所支持几项关于ASON的重大研究计划,我国的“863”计划也支持ASON项目。

  基于电交叉的自动交换传输网已投入商用,美国AT&T公司在全国范围敷设了连接100个城市的智能光网络,由100台CIENA光交换机和800多台SONET多业务平台构成。前者完成以45 Mbit/s为基础带宽颗粒的实时交换和动态调配,后者在网络边缘把低速业务汇聚至2.5 Gbit/s或10Gbit/s速率。新网络降低成本、提高带宽利用率、简化网络结构层次,使全网的恢复时间缩短到数百毫秒。

2 ASON的分层体系结构

  ASON是可智能化完成光网络交换连接功能的下一代光传送网。它通过自动邻居发现、自动业务发现、选路算法、光通路管理和端到端保护等功能的相互协调,建立一种可行、可靠的保护恢复机制,实现网络资源和拓扑结构的自动发现,提供智能光路由,并提供分布式智能恢复算法[2],是一种具有高灵活性、高可扩展性的基础光网络设施。它能在光层上直接提供服务,快速满足用户需求,有效解决网络可扩展性、可管理性、快速配置用户带宽、对用户带宽提供端到端保护等问题,便于开展波长批发、波长出租、带宽贸易、按使用量付费、光VPN和动态路由分配等业务。

  从功能层面来讲,ASON由控制平面、管理平面和传送平面三大平面组成[3]。

  与传统光传送网相比较,ASON的一个明显不同就是引入控制平面,使整个光网络出现前所未有的变化,ASON的3个平面分别完成不同功能。与传统网络类似,传送平面仍负责传送业务,但这时传送平面的动作却是在控制和管理平面的作用下进行的;控制和管理平面能对传送平面的资源进行操作,这些操作是通过传送平面与控制和管理平面之间的接口完成的[3]。同时,管理平面起到高层管理者的作用。管理平面中有3个管理器:控制平面管理器、传送平面管理器和资源管理器,这3个管理器是管理平面与其他平面之间实现管理功能的代理。此外,从图1还可看出,在控制平面与其他平面之间也存在??平面之间功能的协调和对传送平面资源的管理操作[4]。

3 ASON的控制平面

  智能光网络的特征在于能根据用户的需求动态分配光通道。由于控制平面的引入,使光网络中原本固定静态的连接逐步演变成3种类型:永久性连接(PC)、软永久性连接(SPC)和交换连接(SC)[5]。PC和SC都可由控制平面中的信令和路由技术来实现,唯一的差别在于SPC是在网络边缘存在永久连接,利用网络内部的SC来提供网络边缘PC之间的端到端连接。

  在未来的智能光网络中,将由控制平面快速有效地配置SPC和SC。正是由于SC的引入,才有了根据用户需求产生恰当光通道的能力。这种能力与ASON中控制平面的作用息息相关,如果没有控制平面,ASON就不具备自动交换能力,就没有智能化的灵魂。控制平面由信令网络支持,它由多种功能部件组成,包括一组通信实体和控制单元(光连接控制器(OCC))及相应接口。这些功能部件主要用于调用传送平面的资源,以提供与连接的建立、维持和拆除(释放网络资源)有关的功能。

  目前,涉及智能光网络标准工作的国际标准组织和准标准组织有ITU-T、光互联网论坛(OIF)和因特网工程任务组(IETF),每个组织都有一整套自己的结构原理和要求,并据此开发控制平面机制[6]。

  ITU-T采用传统的从上往下设计方法,主要负责网络体系结构、网络性能、设备功能要求和物理层规范等,已完成一系列标准,称为G.ason/G.astn。例如:G.8070定义自动交换传送网(ASTN)总体要求;G.8080定义ASON结构;G.7713定义协议独立的分布式呼叫和连接管理信令;G.7713.1定义基于专用网口间接(PNNI)的DCM信令;G.771.3.2定义使用通用多协议标签交换(GMPLS)RSVP-TE的DCM信令;G.7713.3定义使用GMPLS CR-LDP的DCM信令;G.7714定义ASON/ASTN中的自动发现技术;G.7715定义在ASON中建立SC和SPC选路功能的结构和要求;G.7716定义ASON链路管理。

  IETF着重规范具体协议和信令,正利用现有信令协议的扩展和修改来开发ASON控制平面,该组织于1999年提出多协议波长交换(MPLambdaS),并于2001年正式提出开发面向光网络的GMPLS协议。GMPLS协议拓展了传统的MPLS协议和MPLambdaS协议,支持多种类型的交换,包括时分复用(TDM,如SDH时分交换)、波长和空间交换(如端***换和光纤交换等),网络节点所作出的转发决定是基于时隙、波长或物理端口和光纤编号的最初,IETF的信令要求主要基于对等模型(peermodel),即全平面结构,无明确的用户网络接口(UNI)和网络间接口(NNI)概念。

  OIF的位置处于二者之间,其规范试图结合二者,但更多地基于结构式方法,即重叠网模型。从ASON/ASTN控制面的结构原理和要求开始,主要规范UNI和NNI,目前已完成UNI 1.O版本,并演示了多厂家的互操作性,正在开发2.O版本,旨在增强接口功能,NNI的规范工作也有进展。

  从理论上说,三者的工作领域没有冲突,但实际上由于技术、文化和政治的差异,导致具体问题上的冲突,特别是ITU-T与IETF之间有不少冲突的地方,正在协调解决。在智能光网络的研究工作中,我国主要依据ITU-T的相关建议,同时兼顾IETF和OIF的相关文档。

  上面的介绍中有一种技术不可不提,它就是IETF提出的对等模型网络结构----GMPLS。在开放系统互连参考模型(OSI)中,传输层、链路层和网络层相互独立,各自用自己的语言在本层内的设备间沟通,形成各自的标准体系。在GMPLS的体系结构中,没有语言的差异,只有分工不同,GMPLS就是各层设备的共同语言。GMPLS虽然统一了信令,但并没有抹杀网络设备的功能差异,也就是说,GMPLS承认并接受网络设备用户平面的差异[7]。GMPLS把交换划分为分组交换(PSC)、时分复用、波长交换(LSC)和光纤交换(FSC)4种类型。一个网络节点可以只完成其中1种或几种交换功能,人们仍习惯地把GMPLS网络简单地划分为路由网络和光网络二层结构,这两个网络间不再重叠,而是对等的,它们平等地用相同的信令进行沟通。

  GMPLS协议族包括3个主要组成部分:链路管理协议(LMP和LMP-WDM)定义链路管理功能;路由扩展协议(OSPF-TE和ISIS-TE)定义域内路由功能;标签分发协议(RSVP-TE和CR-LDP)定义信令功能。这些协议族定义完整的协议状态机制和管理信息库。GMPLS要求所有网络节点都必须运行GMPLS才能实现GMPLS功能。需要说明的是,单独用GMPLS并不能实现ASON的控制平面。

4 ASON的管理平面

  在关注网络控制平面的同时,ASON并没有丢弃管理功能,而是把二者放在平等的地位,使两种技术互为补充,实现对网络资源的动态配置、性能监测、故障管理和路由规划等功能。管理平面与控制平面之间通过管理平面与控制平面的接***换相关信息,实现管理平面与控制平面之间功能的协调。管理平面在对光传送网及网元设备管理的同时,实现网络操作系统与网元之间更高效的通信功能。管理平面的主要功能是建立、确认和监视光通道,并在需要时对其进行保护和恢复[8]。

  ASON/ASTN在传统光网络的基础上新增了功能强大的控制平面,这给智能光网络的管理带来了一些新问题,集中表现为:

  a)路径管理功能:在多运营商环境下,为了完成网络管理功能,必须统一规范路径建立控制结构,即对控制平面同一管理域(AD)内光通路的建立和不同管理域之间光通路的建立进行统一规范。

  b)命名和寻址:涉及到用户域名与业务提供者域名之间及层网络名之间的翻译和转换,在ASON智能光网络环境下,对命名和寻址的要求主要有名的独立性和名的唯一性。

  c)网管平面与控制平面的协调:由于ASON智能光网络的3种连接类型有的由网管系统建立,有的由信令系统动态建立,有的则由二者合作建立,所以需要研究网管平面与控制平面之间的结合问题。此外,控制平面和管理平面都要维护一定的网络状态信息,它们之间如何协调和配合电是一个重要的研究课题。

5 覆盖

  ASON的传送平面是指光交叉连接(OXC),可能不含WDM链路或集成WDM链路。OXC典型的结构有:整体交换结构(已用于朗讯公司的波长路由器)、三级Clos网络交换结构、分波交换结构(已用于美国多波长光网(MONET)和中国高速信息示范网)、独立交换结构(已用于欧盟泛欧光网(OPEN))、对称交换结构和自由扩展交换结构(基于分立单元,光纤数和波长数可任意增加,但实用意义不大)。

  贝尔实验室开发的基于MEMS的OXC实质上是一个二维镜片阵,当需要转换入射波长时,可改变镜片的角度,把光波反射到相应的光纤中。

这种OXC很容易组成大型光交叉矩阵,同时具有极佳的光学特性。如果组成一个256×256的OXC,其体积只有25×50×50(nm3),光路转换时间小于5 ms,串扰小于-50 dB,MEMS技术可以在极小的晶片七排列大规模机械矩阵,响应速率和可靠性大为提高。从目前的情况来看,它极有可能成为今后OXC的发展方向[9]。

  目前OXC技术存在的主要问题有:

  a)无法保证系统的完全透明性,主要原因在于全光波长转换技术尚未完全成熟;

  b)由于受光器件的制约,特别是大规模光交叉矩阵开关的制约,系统的规模和灵活性不够理想:

  c)在网络管理方面,按照ITU-T光传送网的分层结构,光传送网的网元管理系统一般按光通道层(OCH)、光复用段层(0MS)、光传送层(OTS)三层设计,具备纠错码(ECC)通信和四大管理功能,但具体细节还不够详细,很多内容有待进一步研究和规范。

6 新一代SDH/SONET技术MSTP

  目前,各运营商的城域传送网正从采用单纯的SDH设备,转向采用基于SDH,能同时提供口、TDM和ATM等多种业务,集成传输、交换和路由功能的多业务传送平台(MSTP)。MSTP可以基于多种线路速率(155Mbit/s/622Mbit/s、2.5Gbit/s和10 Gbit/s等)实现。一方面,MSTP保留固有的TDM交叉能力和传统的SDH/PDH业务接口,继续满足话音业务的需求;另一方面,MSTP提供ATM处理、以太网透传和以太网L2交换功能,以满足数据业务汇聚、梳理和整合的需求。

  目前,国际标准化组织正努力推出促进传统电路交换网向分组网演进的一系列标准。代表性的技术标准有:

  b) 2001年11月,ITU-T针对SDH的虚级联设计了一种良好的链路容量转换机制(LCAS)协议G.7042.改进了原有SDH因固定带宽难以承载突发性IP业务的不足。

  MSTP的远期目标是:采用ASON的体制,在MSTP的传送平面上,引入一个智能化的、通过软交换信令实现的控制平面,借以实现动态的SDH电路配置和最灵活的多级带宽分配[10]。
时间:  2011-7-4 21:02
作者: superstaruu     标题: 回复 5# 的帖子

弱弱的问 :还有 么??
时间:  2011-11-16 20:22
作者: siddasidda

主题不够新啊.




通信人家园 (https://www.txrjy.com/) Powered by C114