通信人家园

标题: [分享]矩阵分解的方法  [查看完整版帖子] [打印本页]

时间:  2010-6-6 09:55
作者: youngsuper     标题: [分享]矩阵分解的方法

矩阵分解 (decomposition, factorization)是多半将矩阵拆解为数个三角形矩阵(triangular matrix),依使用目的的不同 ,可分为三种矩阵分解法:1)三角分解法 (Triangular Factorization)2)QR分解法 (QR Factorization)3)奇异值分解法 (Singular Value Decompostion)                                                                                                (1) 三角分解法

三角分解法是将原正方 (square) 矩阵分解成一个上三角形矩阵 或是排列(permuted) 的上三角形矩阵 和一个 下三角形矩阵,这样的分解法又称为LU分解法。它的用途主要在简化一个大矩阵的行列式值的计算过程,求 反矩阵,和求解联立方程组。不过要注意这种分解法所得到的上下三角形矩阵并非唯一,还可找到数个不同 的一对上下三角形矩阵,此两三角形矩阵相乘也会得到原矩阵。

(2) QR分解法

QR分解法是将矩阵分解成一个正规正交矩阵与上三角形矩阵。还记得先前我们介绍的正规正交矩阵Q满足的条件吗!所以称为QR分解法与此正规正交矩阵的通用符号Q有关。
(3) 奇异值分解法
奇异值分解 (sigular value decomposition,SVD) 是另一种正交矩阵分解法;SVD是最可靠的分解法,但是它比QR 分解法要花上近十倍的计算时间。[U,S,V]=svd(A),其中UV代表二个相互正交矩阵,而S代表一对角矩阵。 和QR分解法相同者, 原矩阵A不必为正方矩阵。
使用SVD分解法的用途是解最小平方误差法和数据压缩。


时间:  2010-6-7 22:41
作者: yangrhb

谢谢分享




通信人家园 (https://www.txrjy.com/) Powered by C114