a) 网络级节能。基于智能化云平台,对4G/5G等多制式无线网资源进行协同调度,对基站设备、配套设施进行智能化节能控制,实现网随业动、一站一策,在节能的同时保障业务性能,实现业务体验和网络能效双优。网络级节能主要采用4G/5G协同智能节能方案,通过采集网络运行指标、能耗等数据,利用机器学习对历史业务量数据进行建模与预测,根据预测结果自动生成节能策略,通过发送指令控制基站、电源等设备进入节能或正常工作状态,达到全天候、跨厂家、多网协同的系统级节能效果。
b) 站点级节能。构建统一站点资源管理平台,实现对电源、空调等网络基础设施的智能化管控。基于站点资源可视化、功耗数据精准上报、分路智能供电、远程操控等技术,自动感知基站的负载情况、供电质量、电池备电时长、温度等运行数据,实现远程智能控制,降低站点能耗。
a) 提高设备集成度,精简在网设备数量。比如,采用多模多频设备替换单频单制式设备,收编低效能的老旧设备,优化整合存量网络。采用多频多端口天线收编存量天线,减少天面数量,同时缓减站点天面紧张的压力。
b) BBU集中化部署,实现基带资源池化共享。BBU集中化可共享机房主设备、备电和散热设备,减少对机房空间及配套设施的需求,降低机房能耗。同时,基带池化架构更利于站间协同,可以提高软件节能增益。
c) 构建智能敏捷的网络架构。根据实际业务需求变化,灵活配置网络功能,实现网随业需、功能极简,在提升网络能效的同时,保障用户的业务感知。
a) 对于能源供给侧的站点配套设备,采用数字化与智能化技术,实现能源基础设施的可视、可控、可管。实时采集业务量、能耗数据,基于能耗与业务联动技术,控制电源、空调设施的工作状态,按需供电。此外,能源供给侧也可以采用风/光等可再生能源、形成多种形式能量互补,降低供给侧的碳排放。
b) 对于能源使用侧的基站设备,通过硬件架构、工艺、材料创新,结合算法迭代优化,不断提高整机运行效率。同时,融合人工智能、大数据等新兴信息技术,打造AI内生的新型智能化基站设备,根据网络性能、用户业务体验等需求,智能、精准、高效的配置资源,在设备运行阶段达到设备最高能效水平。未来,还需要研究无线光基站、智能超表面等其它高能效通信技术,进一步提高基站设备的能效。
c) 对于能源消费侧的终端设备,研究面向节能与业务感知的绿色空口技术,提升终端设备的处理能力,通过端网业协同,降低终端与网络的能耗。