通信人家园

 找回密码
 注册

只需一步,快速开始

短信验证,便捷登录

搜索

军衔等级:

  大元帅

注册:2004-8-101516

爱心徽章,06年为希望小学奉献爱心纪念徽章 爱心徽章,09年为家园助学活动奉献爱心纪念徽章 家园09年十大网友 爱心徽章,2010年为家园助学活动奉献爱心纪念徽章 爱心徽章,2011年为家园助学活动奉献爱心纪念徽章

跳转到指定楼层
1#
发表于 2004-12-11 12:07:00 |只看该作者 |倒序浏览
宽带无线接入网中的空时编码技术



  随着Internet和多媒体业务的普及,越来越多的应用需要高速无线接入。由于无线传输受到信号衰落和干扰的影响,为了实现高数据速率和高业务质量,要求采用新技术来提高频谱效率和改善链路可靠性。在发射机和接收机使用多个天线进行数据传输的多输入多输出(MIMO)技术,可以在不增加带宽和天线发送功率的情况下,成倍地提高频谱利用率,进而成倍地提高无线信道容量。
  天线阵列很早就被用于接收机分集。“智能天线”提出后,天线阵列在无线通信系统中的应用更得到深入研究。理论上已经证明,采用多个发射天线能把无线信道分割成多个并行的窄带信道,具有提高信道比特传输率的潜能,且研究结果显示,信道容量随天线数量增加而线性增大。与接收分集和智能天线相比,MIMO系统不但能够提供分集增益和阵列增益,而且可以采用空间复用(SDM)的方式提高系统容量。此外,采用MIMO构成多路信道可以在一定程度上对抗信道衰落,因为多个信道同时处于深衰落的可能性较小。
  由于无论发射机还是接收机的天线数都是有限的,因此增加分集增益和提高发射速率是一对矛盾。空时编码(STC)能较好地解决这一矛盾。STC是一类采用多发射天线、单接收天线(或多接收天线),有机结合信道编码与空域发射分集,实现发射速率与分集增益折衷的MIMO通信技术。在不增加总发射功率和总传输带宽的前提下,数据经过STC并通过多个天线发射出去,各发射符号间在空域和时域具有相关性,因而可获得分集增益和编码增益。
  无线高速应用环境下,在基站和移动用户终端间采用STC传输,基站采用双天线时,即使不增加用户终端接收天线的数目,STC系统也能提高系统吞吐量,从而改善非对称应用环境中下行链路传输“瓶颈”问题。如果移动用户终端采用双天线,还可以结合干扰抑制技术,进一步提高系统的容量[1]。


1 空时格码和空时分组码
  随着第三代移动通信系统标准的出台,发射分集技术受到了空前重视,多种发射分集技术被纳入标准当中。北美CDMA2000标准采用的两种发射分集技术分别是空时扩展(STS)和正交发射分集(OTD)。在欧洲的WCDMA标准中,前向链路发射分集分为开环发射分集和闭环发射分集,其中开环发射分集采用空时发射分集(STTD),闭环发射分集采用闭环模式一(CL1)和闭环模式二(CL2)。
  传统的发射分集技术不能满足带宽或发射速率的要求,因此要想在不损失带宽和发射速率的前提下,实现系统的全空间分集增益,应该采用分集与编码相结合的方法,于是AT&T实验室的Tarokh等人提出了空时码(STC)的概念[2]。STC的提出可以认为是多天线MIMO系统以及发射分集研究进程中的一个重要里程碑。STC分为空时格码(STTC)和空时分组码(STBC)。到目前为止,无论是STBC还STTC,大数量发射天线的编码设计问题还是一个难点。因此,如何寻找能够实现更高编码增益以及全空间分集增益的好码目前是STC研究领域的重要课题。

1.1 空时格码
  STTC的基本原理是,原始数据流通过信道编码器进行编码,编码数据经过串/并转换分成nt个数据流;每个数据流形成脉冲后进行调制,在每个时刻t,调制器i的输出信号从第i个天线发射出去。这样,nt个信号从ni个不同的天线同时发射,每个信号的比特周期保持相同。接收机采用Viterbi译码对信号进行判决。图1所示为8状态8PSK的STTC状态和编码。除提供额外编码增益外,这个STTC等效于延时分集传输。其中,经过8状态8PSK映射后,送给第二副天线的延时符号X(k-1)为奇数时,延时符号乘以因子1;当延时符号为偶数时,延时符号乘以因子-1。





  虽然STTC集合了前向差错控制编码和分集,提供信号星座、传输速率、分集增益和网格复杂度之间的最佳折衷方案,带来的增益非常可观,但代价是增加了处理复杂度。例如,当发射天线数目固定时,其解码复杂度随分集重数和传输速率呈指数性增加。
1.2 空时分组码
  尽管STTC比其他发射分集技术具有更好的综合性能,但是当系统要求的发射天线较多时,STTC的复杂度将严重阻碍其在实际系统中的应用。鉴于这种情况,Tarokh等人随后又提出了STBC。STBC的特点为:发射机不要求接收机反馈信道状态信息(CSI),没有带宽扩展,译码简单,在不损失发射速率的前提下达到与最大比合并(MRC)接收分集相同的分集增益。
  虽然STBC实现简单、性能优越,但是由于每个天线的发射功率只有原来的一半,因此信噪比比MRC降低了3 dB;另外,与STTC相比,STBC没有编码增益,因此在实际应用中需要与信道编码相结合。
  对于图1的结构,STBC输入成对符号,即在时刻k,符号Xk和Xk+1分别从天线1和天线2发射;在时刻k+1,符号-X*k+1和X*k分别从天线1和天线2发射。其中( ·)*表示复共轭。这样可保证欲发射符号具有正交空时结构,构成完全时域分集。该结构已经被IS-136、WCDMA和CDMA2000等移动通信标准所采纳。


2 空时编码中的信号处理

2.1 宽带信道模型
  假设进行空时编码传输的信道是频率选择性衰落的,且从第i副发射天线到单个接收天线的信道脉冲响应(CIR)为无线脉冲响应hi。hi的D变换为:



其中,V为信道记忆长度,D为单位延时,hi(k)为hi的第k个元素。

2.2 信道估值
  在接收端的联合均衡与编码及干扰抑制中,CSI起着关键作用。为使估值过程简单,估值结果可靠,一般采取在传输数据中嵌入训练序列的方式辅助CSI估值。估值时会有两个问题:一是,对于单发射天线传输,嵌入的训练序列应有高自相关和低互相关,即具有联合序列最佳根(PRUS)的特性;二是,对于多发射天线的传输,随需要估值的信道参数个数增加,每副发射天线的发射功率却减少。后者的解决方法是对单一训练序列进行空时编码,产生有限的ni个相关的训练序列,其性能虽比PRUS要差一些,但也属次优,而此时训练序列的搜索空间尺寸从C    减少到C  (C为输入和输出字符集的大小,Nt为训练序列长度)。


(1)STTC编码训练序列
  具有m个二进制存储记忆单元和信号坐标大小为C的空时编码器,嵌入CIR的STTC编码结构产生等效的记忆长度为m+v的单输入单输出(SISO)CIR。对于图1的双发射天线和单接收天线的8状态8PSK STTC,嵌入CIR的空时编码器在信道上产生记忆长度为V+1的等效SISO信道,其信道脉冲响应h1的D变换为:



其中,pk等于+1还是-1取决于欲传输的数据。在分组传输期间,可以认为信道脉冲响应h1和h2不变。在发射偶数训练符号Ce={0,2,4,6}时,pk=+1;此时等效信道为he(D)=h1(D)+Dh2(D)。而在发射奇数训练符号Co={1,3,5,7}时,pk=-1;此时等效信道为ho(D)=h1(D)-Dh2(D)。在估值he(D)和ho(D)参数后,可得到:



  若训练序列写成S=[Se,So],其中Se长度为Nt/2,取值位于Ce子坐标内。而So的长度为Nt/2,取值位于Co子坐标内。若Se是he(D)在最小均方误差(MMSE)准则下的最佳估值序列,则So=exp(       ),k=1,3,5,7也是ho(D)在MMSE准则下的最佳估值序列。这样,训练序列S的搜索空间可从8  减少到序列Se的搜索空间4    ,简化了估值算法。


(2)STBC编码训练序列
  STBC编码器把连续输入的分组S1和S2映射到两副天线上,转换成欲发射分组[S1,-     ]和[S2,     ]。其中,(·)表示时间倒置序列,如S=[S(0),S(1),…,S(Nt-1)],则S =[S(Nt-1),…,S(1),S(0)]。若接收到第1和第2分组信号y1和y2表示为:





  其中,z1、z2表示噪声。
  当两个训练序列互不相关时,即在训练序列相关矩阵S*S中的非对角线元素为零时,可得MMSE准则下信道估值。欲达到MMSE准则下的信道估值,可进行下述选择:

选择序列S1,使S1与其中心对称且具有良好自相关特性,并令S2=S1。

选择序列S1,使S1具有良好自相关特性,并令S2=     。
  可见,空时编码结构可简化训练序列设计。对于STBC,由于Alamouti正交结构带来两个输入间解耦,可免除对训练序列之间低互相关的要求。

2.3 联合均衡
  对于宽带传输,均衡是消除符号间干扰必须的技术,均衡的关键是均衡和解码联合方案的设计。通过空时编码和均衡,可以用相等功率同时传输多重相关信号[3]。


(1)STTC均衡
  在8状态8PSK STTC中,基于格型联合均衡和具有8V+1状态的空时解码可降低均衡/解码的复杂度。否则,格型均衡需要82V状态,STTC解码需要8状态。


(2)STBC均衡
  采用 STBC可兼顾性能指标与复杂度指标。在频率选择性信道中,欲获取多径分集增益,需在时域和频域以分组块形式实施单载波频域均衡(SCFDE)。SCFDE 的复杂度类似于OFDM。由于SCFDE采用不同于OFDM的单载波方式,还可避免峰均比(PAPR)大和对频率误差敏感度高等缺点。
  设第i副天线第k个发射分组块中第n个符号表示为Xi(k)(n),信息源在时刻k=0,2,4…产生长度为N的分组块对,即为X1 (n)和X2    (n)(其中0≤n≤N-1)。在SCFDE/STBC的发射分集中,有:





其中,n=0,1,…,N-1;k=0,2,4…,(·)N表示模N运算。长度为V的循环前缀(CP)嵌入欲发射的分组块中来消除分组块之间干扰(IBI)。经过A/D变换后,删除接收分组块中CP,长度为N的成对分组块经过快速傅里叶变换(FFT)至频域,产生两个分组块。


  其中,X1   和X2  分别是信息块x1   和x2 的FFT,Z是噪声。经过FFT后,循环矩阵呈现对角矩阵特性,即意味可删除载波间干扰。Λ1和Λ2分别为含有h1和h2的N个FFT系数的维数为N×N对角矩阵。
  欲消除天线间干扰,可增设线性组合器Λ*。线性组合器输出的解耦分组块分别利用MMSE准则下含有N个复抽头的频域均衡来消除符号间干扰。MMSE 准则下频域均衡的输出经过逆快速傅里叶变换(IFFT)再从频域变换回时域。

2.4 干扰抵消
  若在基站增设第二副接收天线,并采用干扰抵消技术,可以成倍增加系统容量而并不增加无线频谱资源。在两个STBC用户中,每个用户装设两副接收天线,式(6)改写成:





  其中,Y1和Y2分别为来自第1和第2副天线的待处理信号,S为来自干扰用户的第1和第2副天线欲发射两个信息块的FFT矢量,两个STBC用户采用线性迫零干扰抵消器来解耦。



  其中,(·)-1表示逆运算。Λxdef=Λx-ГxГs-1Λs,Гsdef=Гs-ΛsΛx-1Гx。这里Λs和Гs均为正交Alamouti型矩阵。


3 结束语
  早期STC研究集中在平衰落窄带信道环境,欲把STC应用于多用户宽带频率选择性衰落信道环境,将面临宽带信道长时延扩散的挑战。因为长时延扩散会带来信道估值参数数目的增加,进而导致联合均衡与格型编码数的增加和计算复杂度与功耗的剧增。STC技术在宽带信道中的信道估值、联合均衡与编码、干扰抑制信号处理算法上的突破会提高系统的吞吐量和系统的容量,从而获得系统编码增益。
  在无线高速应用环境下,基站和移动用户终端间采用STC传输,能提高系统吞吐量,改善非对称应用环境中下行链路传输“瓶颈”问题,还可以结合干扰抑制技术,进一步提高系统容量。因此,未来一段时间内,对于利用多天线技术提高频谱效率和系统容量的全面、深入的研究和面向实际应用的算法及部件的开发,在学术界和工业界都会受到持续的重视,有相当多的工作可做。



举报本楼

本帖有 2 个回帖,您需要登录后才能浏览 登录 | 注册
您需要登录后才可以回帖 登录 | 注册 |

版规|手机版|C114 ( 沪ICP备12002291号-1 )|联系我们 |网站地图  

GMT+8, 2025-8-6 01:19 , Processed in 0.627569 second(s), 18 queries , Gzip On.

Copyright © 1999-2025 C114 All Rights Reserved

Discuz Licensed

回顶部